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Perturbations depend on scale

Origin of perturbations: fluctuations of
quantum vacuum

Space expands and perturbations get stretched

Perturbations (eventually) become classical and
freeze after crossing Hubble horizon

Strong perturbations from ultra-slow-roll
inflation
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Must go beyond linear
perturbations

Coarse-grain perturbations over super-Hubble scales

Gradient expansion: to leading order, coarse-grained
perturbations follow locally (non-linear)
FLRW equations [Class.Q.Grav.9,1943(1992)]

∆N formalism: from FLRW variables to
perturbation variables [astro-ph/9507001]

Change in e-folds of expansion ∆N =
curvature perturbation R
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Stretching perturbations give
stochastic kicks

When perturbations of a certain scale stretch to the
coarse-graining scale, they get coarse-grained

Result: ‘kicks’ to coarse-grained field.
Random due to quantum initial conditions

Stochastic evolution of local coarse-grained field
[Lect.Notes Phys.246,107(1986)]
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PBHs form from strong
perturbations

During radiation domination, perturbations
re-enter Hubble radius

Perturbation collapses to black hole if it
exceeds threshold
[1309.4201, 1405.7023, 2011.03014]

BH mass = all the mass inside one Hubble
radius when the scale re-enters
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ALGORITHM

Track numerically evolution of coarse-grained
field φ̄ and linear perturbations δφ

Initial conditions: CMB scale,
Bunch–Davies vacuum

Stochastic evolution with backreaction
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Non-linear interactions included

k
kcφ̄ δφk

modes cross to
local background

local background
affects high-k modes

non-linear
background
interactions

Compare to simpler approach with noise ∼ H2

2π2

9/16



Non-linear interactions included

k
kcφ̄ δφk

modes cross to
local background

local background
affects high-k modes

non-linear
background
interactions

Compare to simpler approach with noise ∼ H2

2π2

9/16



ALGORITHM
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field φ̄ and linear perturbations δφ

Initial conditions: CMB scale,
Bunch–Davies vacuum

Stochastic evolution with backreaction

Stochastic kicks end when PBH scale reached

Continue (without kicks) to constant-φ
hypersurface, record N

Repeat 1011 times, collect statistics
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Want tiny initial PBH fraction

Scale MPBH = 10−14M�, kPBH = 1013 Mpc−1

chosen so that USR ends when kPBH gets
coarse-grained

To contribute significantly to dark matter, need
initial fraction β ∼ 10−16

Gaussian statistics:
σ2
R =

∫ kPBH d(ln k)PR(k)

β = 2
∫∞
Rc dR 1√

2πσR
e
− R2

2σ2R ≈
√

2σR√
πRc e

− R2
c

2σ2R
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True abundance much higher than
Gaussian estimate

Numerics: exponential tail, with

β = 1.2× 10−10 , ΩPBH = 5.4× 104

Larger than Gaussian result by factor 105!

13/16



Future directions

More statistics

More models

Full mass spectrum

Correlations between different scales
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Conclusions

Stochastic inflation captures non-linearities of
cosmological perturbations

Crucial for PBH formation

Introduced a numerical recipe to calculate
these in a general single-field model
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Thank you!

[2012.06551]
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