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Model of inflation fits CMB
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Perturbations depend on scale

Origin of perturbations: fluctuations of
quantum vacuum

Space expands and perturbations get stretched

Perturbations (eventually) become classical and
freeze after crossing Hubble horizon

Strong perturbations from ultra-slow-roll
inflation
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Must go beyond linear
perturbations

Coarse-grain perturbations over super-Hubble scales

Gradient expansion: to leading order, coarse-grained
perturbations follow locally (non-linear)
FLRW equations [Class.Q.Grav.9,1943(1992)]

∆N formalism: from FLRW variables to
perturbation variables [astro-ph/9507001]

Change in e-folds of expansion ∆N =
curvature perturbation R
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Stretching perturbations give
stochastic kicks

When perturbations of a certain scale stretch to the
coarse-graining scale, they get coarse-grained

Result: ‘kicks’ to coarse-grained field.
Random due to quantum initial conditions

Stochastic evolution of local coarse-grained field
[Lect.Notes Phys.246,107(1986)]
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PBHs form from strong
perturbations

During radiation domination, perturbations
re-enter Hubble radius

Perturbation collapses to black hole if it
exceeds threshold
[1309.4201, 1405.7023, 2011.03014]

BH mass = all the mass inside one Hubble
radius when the scale re-enters
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Dividing the field

Divide inflaton field φ into coarse-grained and
short wavelength perturbations:

φ =
∫
k<kc

d3k

(2π)3/2
φ~k e

−i~k·~x

︸ ︷︷ ︸
φ̄

+
∫
k>kc

d3k

(2π)3/2
φ~k e

−i~k·~x

︸ ︷︷ ︸
δφ

with coarse-graining scale kc = σaH, σ < 1

Define coarse-grained field momentum:

π̄ =

∫
k<kc

d3k

(2π)3/2

∂

∂N
φ~k e

−i~k·~x
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Coarse-graining induces noise

Time derivatives:

φ̄′ = π̄ + ξφ

π̄′ =
∫
k<kc

d3k
(2π)3/2

∂2

∂N2φ~k e
−i~k·~x + ξπ

ξφ, ξπ are noise from drifting Fourier-modes
(random due to quantum initial conditions)
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Field equations become stochastic

Full scalar field equation:

∂µ∂µφ− V ′(φ) = 0
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a2H2∇2φ+ V ′(φ)
H2 = 0
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Non-linear interactions included

k
σaHSuper-Hubble Sub-Hubble

modes cross to
local background

local background
affects high-k modes

non-linear
background
interactions
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Perturbations start in Bunch-Davies
vacuum

Perturbation initial conditions are

δφ~k = 1
a
√

2k
, δφ′~k = −

(
1 + i k

aH

)
δφ~k

We follow modes from deep within the Hubble
radius to coarse-graining scale to get the kicks
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Discrete time steps give finite kicks

Free quantum scalar field: Gaussian statistics,
white noise,〈
ξ2
φ

〉
=
〈
(∆φ̄)2

〉
= dN k3

2π2

(
1 + H ′

H

)
|δφ~k|

2

Squeezed state: ξφ and ξπ are highly

correlated, so that ∆π̄ =
δφ′~k
δφ~k

∆φ̄
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Kicks are turned off when target
scale reached

We are interested in PBHs with MPBH = 10−14M�,
corresponding to kPBH = 1013 Mpc−1

After this scale gets coarse-grained, no more
kicks

Coarse-grained patch has correct size for
PBH formation
Shorter wavelengths don’t contribute:
they are ‘smoothed over’

Continue evolution to a fixed field value and
store ∆N = R
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Evolution of patch size

x

t

kc = kPBH

kc = σaH

xc ∼ 1/kc ∼ 1/a
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Algorithm 1: Evolution for each run
Set initial values for N , H, φ̄, π̄.
while φ̄ > φ̄f do

Evolve H, φ̄, π̄ one time step (without
kicks).

for k ∈ {k1, k2, . . .} do
if k = αaH then

Set initial values for δφ~k, δφ
′
~k
.

if σaH < k < αaH then
Evolve δφ~k, δφ

′
~k
one time step.

Add stochastic kick to φ̄, π̄ from the
most recent mode with k < σaH,
unless k > kPBH.



Want tiny initial PBH fraction

Scale MPBH = 10−14M�, kPBH = 1013 Mpc−1

chosen so that USR ends when kPBH gets
coarse-grained

To contribute significantly to dark matter, need
initial fraction β ∼ 10−16

Gaussian statistics:
σ2
R =

∫ kPBH d(ln k)PR(k)

β = 2
∫∞
Rc dR 1√

2πσR
e
− R2

2σ2R ≈
√

2σR√
πRc e

− R2
c

2σ2R
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Model fitted by Gaussian
approximation...
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Model fitted by Gaussian
approximation...
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β = 2.7× 10−16

ΩPBH = 0.13
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Variance: 0.016

Tail: eA−B∆N

A = 1476, B = 28.4

Over threshold:
β = 1.2× 10−10
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...true abundance much higher

Numerics: exponential tail, with

β = 1.2× 10−10 , ΩPBH = 5.4× 104

Larger than Gaussian result by factor 105!

23/29



What about σ?

Coarse-graining parameter σ < 1 is a free parameter
Results may depend on it

Want to make a physically well-motivated choice
Want a lot of non-linear interactions: large σ
Want kicks to be classical: small σ
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Demanding high squeezing sets σ

Classicality measured by squeezing of quantum
state

Squeezed state: phase space probability
distribution classial
Also, ξφ and ξπ correlated

cosh(2rk) = a3
(
k
a |δφk|2 + a

kH
2|δφ′k|2

)
Our choice: σ = 0.01 ensures cosh(2rk) > 100
for all modes when they exit kc
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What about gauge issues?

δφ and thus kicks solved in spatially flat gauge
Easy to solve

To have no kicks in scale factor, need
uniform-N gauge

Tests and theory: no significant difference
[1905.06300]
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Future directions

More statistics

More models

Full mass spectrum

Correlations between different scales
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Conclusions

Stochastic inflation captures non-linearities of
cosmological perturbations

Crucial for PBH formation

Introduced a numerical recipe to calculate
these in a general single-field model
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Thank you!

[2012.06551]
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Model details

V = λ(h)
4 F (h)4

F (h) = Ah√
1+Bξ(h−C)2

, dh
dχ = 1+ξh2√

1+ξh2+6ξ2h2

ξ = 38.8

ns = 0.966, r = 0.012, As = 2.1× 10−9

USR between 17.2 and 20.8 e-folds

[1810.12608]
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Evolution of patch size

x

t

kc = kPBH

kc = σaH

xc ∼ 1/kc ∼ 1/a
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	Appendix

