A numerical approach to stochastic inflation and primordial black holes

APC, 26th January 2021

Eemeli Tomberg, NICPB Tallinn eemeli.tomberg@kbfi.ee

Based on 2012.06551, in collaboration with D. Figueroa, S. Raatikainen, S. Räsänen

Cosmic inflation

Cosmic inflation

Cosmological perturbations

Concepts

Cosmic inflation

Cosmological perturbations

Primordial black holes

Stochastic inflation

Stochastic inflation

Includes non-linear effects

Concepts

Stochastic inflation

- Includes non-linear effects
- Numerical method: even more non-linearities

Model of inflation fits CMB

Model of inflation fits CMB

Model of inflation fits CMB

Origin of perturbations: fluctuations of quantum vacuum

Origin of perturbations: fluctuations of quantum vacuum

Space expands and perturbations get stretched

Origin of perturbations: fluctuations of quantum vacuum

Space expands and perturbations get stretched

Perturbations (eventually) become classical and freeze after crossing Hubble horizon

Origin of perturbations: fluctuations of quantum vacuum

Space expands and perturbations get stretched

Perturbations (eventually) become classical and freeze after crossing Hubble horizon

Strong perturbations from ultra-slow-roll inflation

Must go beyond linear perturbations

Coarse-grain perturbations over super-Hubble scales

Gradient expansion: to leading order, coarse-grained perturbations follow locally (non-linear) FLRW equations [Class.Q.Grav.9,1943(1992)]

Must go beyond linear perturbations

Coarse-grain perturbations over super-Hubble scales

Gradient expansion: to leading order, coarse-grained perturbations follow locally (non-linear) FLRW equations [Class.Q.Grav.9,1943(1992)]

 ΔN formalism: from FLRW variables to perturbation variables [astro-ph/9507001]

• Change in e-folds of expansion $\Delta N =$ curvature perturbation \mathcal{R}

Stretching perturbations give stochastic kicks

When perturbations of a certain scale stretch to the coarse-graining scale, they get coarse-grained

Stretching perturbations give stochastic kicks

When perturbations of a certain scale stretch to the coarse-graining scale, they get coarse-grained

Result: 'kicks' to coarse-grained field. Random due to quantum initial conditions

Stretching perturbations give stochastic kicks

When perturbations of a certain scale stretch to the coarse-graining scale, they get coarse-grained

Result: 'kicks' to coarse-grained field. Random due to quantum initial conditions

Stochastic evolution of local coarse-grained field [Lect.Notes Phys.246,107(1986)]

PBHs form from strong perturbations

During radiation domination, perturbations re-enter Hubble radius

PBHs form from strong perturbations

During radiation domination, perturbations re-enter Hubble radius

Perturbation collapses to black hole if it exceeds threshold [1309.4201, 1405.7023, 2011.03014]

PBHs form from strong perturbations

During radiation domination, perturbations re-enter Hubble radius

Perturbation collapses to black hole if it exceeds threshold [1309.4201, 1405.7023, 2011.03014]

BH mass = all the mass inside one Hubble radius when the scale re-enters

Dividing the field

Divide inflaton field ϕ into coarse-grained and short wavelength perturbations:

$$\phi = \underbrace{\int_{k < k_{c}} \frac{\mathrm{d}^{3}k}{(2\pi)^{3/2}} \phi_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}}}_{\bar{\phi}} + \underbrace{\int_{k > k_{c}} \frac{\mathrm{d}^{3}k}{(2\pi)^{3/2}} \phi_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}}}_{\delta\phi}}_{\delta\phi}$$

with coarse-graining scale $k_{\rm c}=\sigma a H$, $\sigma<1$

Dividing the field

Divide inflaton field ϕ into coarse-grained and short wavelength perturbations:

$$\phi = \underbrace{\int_{k < k_{c}} \frac{\mathrm{d}^{3}k}{(2\pi)^{3/2}} \phi_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}}}_{\bar{\phi}} + \underbrace{\int_{k > k_{c}} \frac{\mathrm{d}^{3}k}{(2\pi)^{3/2}} \phi_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}}}_{\delta\phi}}_{\delta\phi}$$

with coarse-graining scale $k_{\rm c} = \sigma a H$, $\sigma < 1$

Define coarse-grained field momentum:

$$\bar{\pi} = \int_{k < k_{\rm c}} \frac{\mathrm{d}^3 k}{(2\pi)^{3/2}} \frac{\partial}{\partial N} \phi_{\vec{k}} \, e^{-i\vec{k} \cdot \vec{x}}$$

Coarse-graining induces noise

Time derivatives:

$$\bar{\phi}' = \bar{\pi} + \xi_{\phi}$$
$$\bar{\pi}' = \int_{k < k_{c}} \frac{\mathrm{d}^{3}k}{(2\pi)^{3/2}} \frac{\partial^{2}}{\partial N^{2}} \phi_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}} + \xi_{\pi}$$

 ξ_{ϕ} , ξ_{π} are noise from drifting Fourier-modes (random due to quantum initial conditions)

Full scalar field equation:

 $\partial^{\mu}\partial_{\mu}\phi - V'(\phi) = 0$

Full scalar field equation: $\phi'' + \left(3 + \frac{H'}{H}\right)\phi' - \frac{1}{a^2H^2}\nabla^2\phi + \frac{V'(\phi)}{H^2} = 0$

Full scalar field equation: $\int \frac{\mathrm{d}^{3}k}{(2\pi)^{3/2}} \frac{\partial^{2}}{\partial N^{2}} \phi_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}} + \left(3 + \frac{H'}{H}\right)(\bar{\pi} + \delta\pi)$ $-\frac{1}{a^{2}H^{2}} \nabla^{2} \bar{\phi} - \frac{1}{a^{2}H^{2}} \nabla^{2} \delta\phi$ $+\frac{1}{H^{2}} \left(V'(\bar{\phi}) + \frac{1}{2}V''(\bar{\phi})\delta\phi + \frac{1}{6}V'''(\bar{\phi})\delta\phi^{2} + \dots\right)$ = 0

Full scalar field equation: $\int \frac{\mathrm{d}^{3}k}{(2\pi)^{3/2}} \frac{\partial^{2}}{\partial N^{2}} \phi_{\vec{k}} e^{-i\vec{k}\cdot\vec{x}} + \left(3 + \frac{H'}{H}\right)(\bar{\pi} + \delta\pi)$ $-\frac{1}{a^{2}H^{2}} \nabla^{2} \overline{\phi}^{-} \frac{1}{a^{2}H^{2}} \nabla^{2} \delta\phi$ $+ \frac{1}{H^{2}} \left(V'(\bar{\phi}) + \frac{1}{2}V''(\bar{\phi})\delta\phi + \frac{1}{6}V'''(\bar{\phi})\delta\phi^{2} + \dots\right)$ = 0
Field equations become stochastic

Full scalar field equation:

$$\bar{\pi}' + \left(3 + \frac{H'}{H}\right)\bar{\pi} + \frac{1}{H^2}V'(\bar{\phi}) = \xi_{\pi}$$

$$\bar{\phi}' = \bar{\pi} + \xi_{\phi}$$

$$\delta\phi''_{\vec{k}} + \left(3 + \frac{H'}{H}\right)\delta\phi'_{\vec{k}} + \left(\frac{k^2}{a^2H^2} + \frac{1}{H^2}V''(\bar{\phi})\right)\delta\phi_{\vec{k}} = 0$$

Field equations become stochastic

Full scalar field equation:

$$\begin{split} \bar{\pi}' + \left(3 + \frac{H'}{H}\right) \bar{\pi} + \frac{1}{H^2} V'(\bar{\phi}) &= \xi_{\pi} \\ \bar{\phi}' &= \bar{\pi} + \xi_{\phi} \\ \delta \phi_{\vec{k}}'' + \left(3 + \frac{H'}{H}\right) \delta \phi_{\vec{k}}' + \left(\frac{k^2}{a^2 H^2} + \frac{1}{H^2} V''(\bar{\phi}) + \dots\right) \delta \phi_{\vec{k}} = 0 \\ 3HH' + \left(3 + \bar{\pi}^2\right) H^2 &= V(\bar{\phi}) \end{split}$$

Non-linear interactions included

Perturbations start in Bunch-Davies vacuum

Perturbation initial conditions are

$$\delta \phi_{\vec{k}} = \frac{1}{a\sqrt{2k}}, \qquad \delta \phi'_{\vec{k}} = -\left(1 + i\frac{k}{aH}\right)\delta \phi_{\vec{k}}$$

We follow modes from deep within the Hubble radius to coarse-graining scale to get the kicks

Discrete time steps give finite kicks

Free quantum scalar field: Gaussian statistics, white noise,

$$\left\langle \xi_{\phi}^{2} \right\rangle = \left\langle (\Delta \bar{\phi})^{2} \right\rangle = \mathrm{d}N \tfrac{k^{3}}{2\pi^{2}} \left(1 + \tfrac{H'}{H} \right) \left| \delta \phi_{\vec{k}} \right|^{2}$$

Discrete time steps give finite kicks

Free quantum scalar field: Gaussian statistics, white noise,

$$\left\langle \xi_{\phi}^{2} \right\rangle = \left\langle (\Delta \bar{\phi})^{2} \right\rangle = \mathrm{d}N \frac{k^{3}}{2\pi^{2}} \left(1 + \frac{H'}{H}\right) \left| \delta \phi_{\vec{k}} \right|^{2}$$

Squeezed state: ξ_{ϕ} and ξ_{π} are highly correlated, so that $\Delta \bar{\pi} = \frac{\delta \phi'_{\vec{k}}}{\delta \phi_{\vec{k}}} \Delta \bar{\phi}$

We are interested in PBHs with $M_{\rm PBH} = 10^{-14} M_{\odot}$, corresponding to $k_{\rm PBH} = 10^{13} \ {\rm Mpc}^{-1}$

We are interested in PBHs with $M_{\rm PBH} = 10^{-14} M_{\odot}$, corresponding to $k_{\rm PBH} = 10^{13} \ {\rm Mpc}^{-1}$

After this scale gets coarse-grained, no more kicks

We are interested in PBHs with $M_{\rm PBH} = 10^{-14} M_{\odot}$, corresponding to $k_{\rm PBH} = 10^{13} \ {\rm Mpc}^{-1}$

After this scale gets coarse-grained, no more kicks

 Coarse-grained patch has correct size for PBH formation

We are interested in PBHs with $M_{\rm PBH} = 10^{-14} M_{\odot}$, corresponding to $k_{\rm PBH} = 10^{13} \ {\rm Mpc}^{-1}$

After this scale gets coarse-grained, no more kicks

- Coarse-grained patch has correct size for PBH formation
- Shorter wavelengths don't contribute: they are 'smoothed over'

We are interested in PBHs with $M_{\rm PBH} = 10^{-14} M_{\odot}$, corresponding to $k_{\rm PBH} = 10^{13} \ {\rm Mpc}^{-1}$

After this scale gets coarse-grained, no more kicks

- Coarse-grained patch has correct size for PBH formation
- Shorter wavelengths don't contribute: they are 'smoothed over'

Continue evolution to a fixed field value and store $\Delta N=\mathcal{R}$

Evolution of patch size

Algorithm 1: Evolution for each run

```
Set initial values for N, H, \phi, \bar{\pi}.
while \bar{\phi} > \bar{\phi}_{\rm f} do
     Evolve H, \phi, \bar{\pi} one time step (without
         kicks).
     for k \in \{k_1, k_2, ...\} do
           if k = \alpha a H then
                Set initial values for \delta \phi_{\vec{k}}, \delta \phi'_{\vec{k}}.
           if \sigma a H < k < \alpha a H then
                Evolve \delta \phi_{\vec{k}}, \delta \phi'_{\vec{k}} one time step.
     Add stochastic kick to \phi, \bar{\pi} from the
         most recent mode with k < \sigma a H,
         unless k > k_{\text{PBH}}.
```

Scale $M_{\rm PBH} = 10^{-14} M_{\odot}$, $k_{\rm PBH} = 10^{13} \rm ~Mpc^{-1}$ chosen so that USR ends when $k_{\rm PBH}$ gets coarse-grained

Scale $M_{\rm PBH} = 10^{-14} M_{\odot}$, $k_{\rm PBH} = 10^{13} \rm \ Mpc^{-1}$ chosen so that USR ends when $k_{\rm PBH}$ gets coarse-grained

To contribute significantly to dark matter, need initial fraction $\beta \sim 10^{-16}$

Scale $M_{\rm PBH} = 10^{-14} M_{\odot}$, $k_{\rm PBH} = 10^{13} \rm \ Mpc^{-1}$ chosen so that USR ends when $k_{\rm PBH}$ gets coarse-grained

To contribute significantly to dark matter, need initial fraction $\beta \sim 10^{-16}$

Gaussian statistics:

$$\sigma_{\mathcal{R}}^{2} = \int^{k_{\text{PBH}}} \mathrm{d}(\ln k) \mathcal{P}_{\mathcal{R}}(k)$$
$$\beta = 2 \int_{\mathcal{R}_{c}}^{\infty} \mathrm{d}\mathcal{R} \frac{1}{\sqrt{2\pi}\sigma_{\mathcal{R}}} e^{-\frac{\mathcal{R}^{2}}{2\sigma_{\mathcal{R}}^{2}}} \approx \frac{\sqrt{2}\sigma_{\mathcal{R}}}{\sqrt{\pi}\mathcal{R}_{c}} e^{-\frac{\mathcal{R}^{2}}{2\sigma_{\mathcal{R}}^{2}}}$$

...true abundance much higher

Numerics: exponential tail, with $\beta = 1.2 \times 10^{-10} , \quad \Omega_{\rm PBH} = 5.4 \times 10^4$

Larger than Gaussian result by factor $10^5!$

What about σ ?

Coarse-graining parameter $\sigma < 1$ is a free parameter \blacksquare Results may depend on it

What about σ ?

Coarse-graining parameter $\sigma < 1$ is a free parameter \blacksquare Results may depend on it

Want to make a physically well-motivated choice
Want a lot of non-linear interactions: large σ
Want kicks to be classical: small σ

Demanding high squeezing sets σ

Classicality measured by squeezing of quantum state

- Squeezed state: phase space probability distribution classial
- Also, ξ_{ϕ} and ξ_{π} correlated

Demanding high squeezing sets σ

Classicality measured by squeezing of quantum state

- Squeezed state: phase space probability distribution classial
- Also, ξ_{ϕ} and ξ_{π} correlated

$$\cosh(2r_k) = a^3 \left(\frac{k}{a} |\delta \phi_k|^2 + \frac{a}{k} H^2 |\delta \phi'_k|^2\right)$$

Our choice: $\sigma = 0.01$ ensures $\cosh(2r_k) > 100$
for all modes when they exit k_c

What about gauge issues?

δφ and thus kicks solved in spatially flat gauge ■ Easy to solve

What about gauge issues?

$\delta\phi$ and thus kicks solved in spatially flat gauge \blacksquare Easy to solve

To have no kicks in scale factor, need uniform- $N\ {\rm gauge}$

 $\delta\phi$ and thus kicks solved in spatially flat gauge \blacksquare Easy to solve

To have no kicks in scale factor, need uniform- $N\ {\rm gauge}$

Tests and theory: no significant difference [1905.06300]

Future directions

More statistics

More models

Full mass spectrum

Correlations between different scales

Conclusions

Stochastic inflation captures non-linearities of cosmological perturbations

Crucial for PBH formation

Introduced a numerical recipe to calculate these in a general single-field model

Thank you!

[2012.06551]

Model details

$$V = \frac{\lambda(h)}{4}F(h)^4$$

$$F(h) = \frac{Ah}{\sqrt{1+B\xi(h-C)^2}}, \quad \frac{dh}{d\chi} = \frac{1+\xi h^2}{\sqrt{1+\xi h^2+6\xi^2 h^2}}$$

$$\xi = 38.8$$

$$n_s = 0.966, r = 0.012, A_s = 2.1 \times 10^{-9}$$
USR between 17.2 and 20.8 e-folds
[1810.12608]

Evolution of patch size

32/29