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Cosmic inflation

m Accelerating expansion of space in the early universe

Cosmological perturbations

m Cosmic microwave background, ...

Primordial black holes

m Dark matter candidate
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Concepts

Stochastic inflation
m Includes non-linear effects

m Numerical method: even more non-linearities
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Overview

3/36



Cosmic inflation

Hypothetical era in the early universe with accelerating
expansion: d(t) >0

ds* = —dt* + a*(t)dx?

4/36



Cosmic inflation

Hypothetical era in the early universe with accelerating
expansion: d(t) >0

ds* = —dt* + a*(t)dx?

Solves problems of the Big Bang model: horizon, flatness,
relic problems

4/36



Cosmic inflation

Hypothetical era in the early universe with accelerating
expansion: d(t) >0

ds* = —dt* + a*(t)dx?

Solves problems of the Big Bang model: horizon, flatness,
relic problems

Explains origin of cosmological perturbations

4/36



Cosmic inflation with a scalar field

a(t) > 0 accomplished by scalar field matter

5= [aev=g(r- 5007 - Vo)
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Cosmic inflation with a scalar field

a(t) > 0 accomplished by scalar field matter
5= [aov=a( G- 007 - vio)

¢+3Ho+V'(¢) =0
3H2M? = %dﬂ +V (o), =

Q| &

Inflation happens when V' (¢) dominates over #*
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Our example model is typical

V(o)

Higgs
inflation
[1810.12608]
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Our example model is typical

V(@) CMB:

ns = 0.966, r = 0.012 ﬁv

Higgs
inflation
[1810.12608]

Inflection point

< (strong perturbations)
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Our example model is typical

V(o)

Slow-roll:

3H¢+Wwo:o_—“\\

3H2MZ =V (¢)

Ultra-slow-roll:

<~ 0+3H=0
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Origin of perturbations: fluctuations of quantum vacuum
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Perturbations depend on scale

Origin of perturbations: fluctuations of quantum vacuum
Space expands and perturbations get stretched

Perturbations (eventually) become classical and freeze after
crossing Hubble horizon

Strong perturbations from ultra-slow-roll inflation
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Linear perturbation theory

Expand to linear order:

0+ 3HS¢p: + V" (6)d¢z = 0
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Linear perturbation theory

Expand to linear order:

0+ 3HS¢p: + V" (6)d¢z = 0

Comoving curvature perturbation and its power spectrum:

S H 3
Ry = T];: Pr(k) = 5 |Rl’
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CMB observables in slow-roll

E\™t 1%
k) = As T ) As = 519
Pr(k) (k) 24726y

n5:1—6€v+277v, 7":166‘/,

M2 [V 2 Vv
= _P(_> ) nv = MIQJ

v=\v Vv
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CMB observables in slow-roll

E\™t 1%
k) = As T ) As = 519
Pr(k) (k) 24726y

n5:1—6€v+277v, 7":166‘/,

M2 [V 2 Vv
= _P(_> ) nv = MIQJ

v=\v Vv

Observations (Planck):

k, =0.05Mpc™', A,~21x107?,
ng~0.96, r<0.08
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Our example model

V(¢) CMB:

Pr =2.1x107?,
ns = 0.966, r = 0.012 j

Pr ~ ¢~2 grows to 0.007
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Must go beyond linear perturbations

Coarse-grain perturbations over super-Hubble scales

Gradient expansion: to leading order, coarse-grained
perturbations follow locally (non-linear) FLRW equations
[Class.Q.Grav.9,1943(1992)]

AN formalism: from FLRW variables to perturbation
variables [astro-ph/9507001]

m Change in e-folds of expansion AN = Alna =
curvature perturbation R
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Stretching perturbations give stochastic kicks

When perturbations of a certain scale stretch to the
coarse-graining scale, they get coarse-grained
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Stretching perturbations give stochastic kicks

When perturbations of a certain scale stretch to the
coarse-graining scale, they get coarse-grained

Result: ‘kicks' to coarse-grained field.
Random due to quantum initial conditions

Stochastic evolution of local coarse-grained field
[Lect.Notes Phys.246,107(1986)]
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PBHs form from strong perturbations

During radiation domination, perturbations re-enter Hubble
radius

Perturbation collapses to black hole if it exceeds threshold
[1309.4201, 1405.7023, 2011.03014]

BH mass = all the mass inside one Hubble radius when the
scale re-enters
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Evolution of length scales

a-x
Superhorizon freezing
/,/”/ Structures
1/H ML L grow
a/k B ] . .
Minkowski-like vacuum
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Exponential tail |
[1707.00537], |
[1912.05399] A

Gaussian fit ———"

10712 N7
Collapse threshold —— =777~

-0.5 0 0.5 1
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Part II:

Technical details
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Dividing the field

Divide inflaton field ¢ into coarse-grained and short
wavelength perturbations:

4’k —ik-% 4’k —ik-%
¢= k<ke (27T)3/2 ¢k ‘ * /k>kc (27T)3/2 ¢k ‘
5 5

with coarse-graining scale k. = caH, 0 < 1
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Dividing the field

Divide inflaton field ¢ into coarse-grained and short
wavelength perturbations:

d3k —zk: X d3k —ik-%
¢= k<kec (27T)3/2 ¢k * /k>kc (27T)3/2 ¢k ‘
¢ 6

with coarse-graining scale k. = caH, 0 < 1

Define coarse-grained field momentum:

__/ A3k 0 e
"7 Jeew, (2m)37 DN VE€
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Coarse-graining induces noise

Time derivatives:
€2_5/ =7 +&

- _ d3k —ik-&
sz<kc (2m)3/2 8N2 ¢k A fﬂ

€5, &x are noise from drifting Fourier-modes: random due to
quantum initial conditions, with (£2) ~ |¢y, |2, (€2) ~ |m,|?
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Field equations become stochastic

Full scalar field equation:

049,69 — V'(¢) = 0
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Full scalar field equation:
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Field equations become stochastic

Full scalar field equation:

J (2?r3§/2 B dpe T+ (34 1) (7 + om)
a2H2 V2¢ - a2H2 VQ(SQb
2 (V(6) + SV(6)56 + LV (6)00* +
=0

)

20/36



Field equations become stochastic

Full scalar field equation:

f (2i3§/2 ONZ2 Qbk 7”6 r + (3 + )(ﬁ + (ST[')
_W_ a2H?2 v25¢
(V@) + V@950 + frigas )
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Field equations become stochastic

Full scalar field equation:

T+ B+ I 7+ HV(¢) =&,

¢ =7+E
o+ (34 )50+ (s + V(8)) 0 = 0
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Full scalar field equation:

T+ B+ I 7+ HV(¢) =&,

¢ =7+E
o+ (34 )50+ (s + V(8)) 0 = 0
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Non-linear interactions included

on.linear /\ local background

background affects high-k£ modes

interactions

O /\ modes cross to
local background

% k

caH

Super-Hubble Sub-Hubble
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Non-linear interactions included

on.linear /\ local background

background affects high-k£ modes

interactions

O /\ modes cross to
local background

% k

caH

Super-Hubble Sub-Hubble

. . . H2
Compare to simpler approach with noise ~ 57—
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Perturbations start in Bunch-Davies vacuum

Perturbation initial conditions are
1 _ k
6¢E__Z_5E’ 5¢%——~—(1—FZEE)5¢E

We follow modes from deep within the Hubble radius to
coarse-graining scale to get the kicks
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Discrete time steps give finite kicks

Free quantum scalar field: Gaussian statistics, white noise,

(€5) = ((A0)) = AN (1 + ) 00y

2
|
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Discrete time steps give finite kicks

Free quantum scalar field: Gaussian statistics, white noise,

(€5) = ((A0)) = AN (1 + ) 00y

2
|

Squeezed state: £, and &, are highly correlated, so that

sl -
AW:%AQﬁ
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Kicks are turned off when target scale reached

We are interested in PBHs with a specific mass Mppy,
corresponding to a specific scale kppy
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Kicks are turned off when target scale reached

We are interested in PBHs with a specific mass Mppy,
corresponding to a specific scale kppy

After this scale gets coarse-grained, no more kicks

m Coarse-grained patch has correct size for PBH
formation

m Shorter wavelengths don't contribute: they are
‘smoothed over’
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ALGORITHM

Track numerically evolution of coarse-grained field ¢ and
linear perturbations d¢
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ALGORITHM

Track numerically evolution of coarse-grained field ¢ and
linear perturbations d¢

m Initial conditions: CMB scale, Bunch—-Davies vacuum

Stochastic evolution with backreaction
Stochastic kicks end when PBH scale reached

Continue (without kicks) to constant-¢ hypersurface,
record N
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ALGORITHM

Track numerically evolution of coarse-grained field ¢ and
linear perturbations d¢

m Initial conditions: CMB scale, Bunch—-Davies vacuum

Stochastic evolution with backreaction
Stochastic kicks end when PBH scale reached

Continue (without kicks) to constant-¢ hypersurface,
record N

Repeat 10'! times, collect statistics

25/36



Part Ill:

Numerical results
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Want tiny initial PBH fraction

PBH fraction today:

M
Qpapy ~ 9x 107738 — ) ~0.3
PBH X VB(MG))
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Want tiny initial PBH fraction

PBH fraction today:

N

-
Qpapy ~ 9x 107738 — ) ~0.3
PBH X VB(M®>

Our example: asteroid mass PBHs,
MPBH = 10714M®, kPBH = 1013 Mpcfl
(USR ends when kppy gets coarse-grained)
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Want tiny initial PBH fraction

PBH fraction today:

N

-
Qpapy ~ 9x 107738 — ) ~0.3
PBH X VB(MG))

Our example: asteroid mass PBHs,

Mppy = 10714M®, kppg = 10'3 Mpcfl
(USR ends when kppy gets coarse-grained)

Need initial fraction 3 ~ 10716
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Model fitted by Gaussian approximation

With Gaussian statistics:
0% = [*B q(In k)Pr (k)
2

~ RZ R

B=2[FdR—-L—c ¥k ~ YZEe R

vV 27r0R VTR
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Model fitted by Gaussian approximation

0.008
0.006
S
& 0.004

0.002

15 16 17 18 19 20 21 22
N
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Model fitted by Gaussian approximation

0.008
0.006
S
& 0.004

0.002

From integral:
0% = 0.0149

20 21 22
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Model fitted by Gaussian approximation

0008 ,‘ T 1T T T T 1 1T 1] ? T T T [ T 1T T T [ T T T T [ T T T T [ T T T T 1T L
0.006 kppu | B8 =27x10"16

‘ 0.13 |

g -

& 0.004 1

0.002 i

0 i

15 16 17 18 19 20 21 22

29/36



Simple
de Sitter case

Gaussian fit, X |
I o2 = 0.0152 —\” 2

10712} N
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Tail: eA-BAN
A =1700, B =33 1

ol Over threshold: 7 |
10771 B=34x10"1" f
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PBH abundance today:

Qppn ~ 10*

0.5

-0.5
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...true abundance much higher

Numerics: exponential tail, with

ﬁ =34 x 1071 , QPBH = 1.6 x 10*
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_.true abundance much higher

Numerics: exponential tail, with

ﬁ =34 X 10_11 , QPBH =1.6 X 104
Larger than Gaussian result by factor 10°!

Other sources of error: uncertainty in R., window functions,
different Gaussian computation schemes, ...

31/36



Alternate setups

Performed simulations in three ways:
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Alternate setups

Performed simulations in three ways:
1. Full simulation with modes and backreaction
2. Modes from unperturbed background, no backreaction

3. No modes; noise ~ H?

Results: 2 is identical to 1; 3 is not. Backreaction on modes
not important; mode evolution is!
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Other scenarios

We also studied other similar potentials, tuned to produce
PBHs of different masses:
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Other scenarios

We also studied other similar potentials, tuned to produce
PBHs of different masses:

m Solar mass: M = 4.7M,
=125

Gauss __ data __ de Sitter

m Galaxy seeds: M = 1.8 x 103M,

Qfaiss = 1.4 x 1075, Q@2 = 0.05, QaeRter = 17
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Other scenarios

We also studied other similar potentials, tuned to produce
PBHs of different masses:

m Solar mass: M = 4.7M,
Q83 = 0.17, QE = 1.6, Qdeter = 125
m Galaxy seeds: M = 1.8 x 103M,
Qfaiss = 1.4 x 1075, Q@2 = 0.05, QaeRter = 17
m Planck mass relics: M = 1.4 x 103 kg,
QSauss = 0.11, Qa8 = 2.4 x 107, Qdeditter = 5 % 10~
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Future directions

Reducing numerical load
Correlations between different scales

PBH statistics from exponential tail
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Conclusions

Inflation produces cosmological perturbations; strongest
collapse to black holes

Non-Gaussian tail of probablity distribution important for
black hole statistics

Stochastic inflation allows us to probe this

Numerical simulations improve accuracy; mode evolution is
important, backreaction not
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Thank youl
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What about o7

Coarse-graining parameter o < 1 is a free parameter
m Results may depend on it
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What about o7

Coarse-graining parameter o < 1 is a free parameter
m Results may depend on it

Want to make a physically well-motivated choice
m Want a lot of non-linear interactions: large o

m Want kicks to be classical: small o
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Demanding high squeezing sets o

Classicality measured by squeezing of quantum state

m Squeezed state: phase space probability distribution
classial

m Also, &, and &, correlated
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Demanding high squeezing sets o

Classicality measured by squeezing of quantum state

m Squeezed state: phase space probability distribution
classial

m Also, &, and &, correlated

cosh(2r) = a* (E|oul? + 7166} )

Our choice: o = 0.01 ensures cosh(2r,) > 100 for all modes
when they exit k.
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What about gauge issues?

d¢ and thus kicks solved in spatially flat gauge
m Easy to solve
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What about gauge issues?

d¢ and thus kicks solved in spatially flat gauge
m Easy to solve

To have no kicks in scale factor, need uniform-N gauge

Tests and theory: no significant difference [1905.06300]
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Model details

V =2 p(pyt

F(h) = ——2h dh _ __ L4€h?
\/1+B¢(h—C)2' dx  \/1+er216e2R2

& =388

ns = 0.966, r = 0.012, A, =2.1 x 107?
USR between 17.2 and 20.8 e-folds

[1810.12608]
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Evolution of patch size

AN\
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nH
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N

40 20 60

42/36



Evolution of patch size
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Algorithm 1: Evolution for each run

Set initial values for N, ¢, @. Set knext = k«. Set current kick coefficient to
zero.
while > ¢; do
Evolve N, ¢, 7.
for all modes k in the simulation do
if £ > caH then
~ !
‘ Evolve ¢y, M)E'
else
L Evolve d¢y, 5(;5”2 to k = ocaH. Set the current kick coefficient from

ors 6(;5;2. Remove mode k from the simulation.

if knext S kPBH then
if knext < aaH then
L Add mode k = kpext to the simulation. Set initial values for 6(1)}3,

§¢!.. Evolve 8¢y, 6¢/. from k = aaH. Set knext = €!/%knext.

else
if knext < caH then

L Set the current kick coefficient to zero.

Add stochastic kick to ¢, 7 using the current kick coefficient.
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