Stochastic inflation: numerics and constraints

University of Sussex, 24 November 2022

Eemeli Tomberg, NICPB Tallinn
eemeli.tomberg@kbfi.ee
Based on 2012.06551, 2111.07437, 2210.17441 in collaboration with D. Figueroa, S. Raatikainen, S. Räsänen

Concepts

Cosmic inflation
■ Accelerating expansion of space in the early universe

Concepts

Cosmic inflation

- Accelerating expansion of space in the early universe

Cosmological perturbations

- Cosmic microwave background, ...

Concepts

Cosmic inflation

- Accelerating expansion of space in the early universe

Cosmological perturbations

- Cosmic microwave background, ...

Primordial black holes (PBHs)

- Dark matter candidate

Concepts

Stochastic inflation

Concepts

Stochastic inflation

- Includes non-linear effects

Concepts

Stochastic inflation

- Includes non-linear effects
- Crucial for the strongest, rarest perturbations

Inflation driven by a scalar field

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2} R-\frac{1}{2} \partial^{\mu} \varphi \partial_{\mu} \varphi-V(\varphi)\right]
$$

Inflation driven by a scalar field

$$
S=\int \mathrm{d}^{4} x \sqrt{-g}\left[\frac{1}{2} R-\frac{1}{2} \partial^{\mu} \varphi \partial_{\mu} \varphi-V(\varphi)\right]
$$

Divide into short-wavelength and coarse-grained parts:

$$
\begin{aligned}
& \varphi(N, \vec{x}) \equiv \phi(N, \vec{x})+\delta \phi(N, \vec{x}) \\
& \quad=\int_{k<k_{\sigma}} \frac{\mathrm{d}^{3} k}{(2 \pi)^{2 / 3}} \phi_{k}(N) e^{-i \vec{k} \cdot \vec{x}}+\int_{k>k_{\sigma}} \frac{\mathrm{d}^{3} k}{(2 \pi)^{2 / 3}} \delta \phi_{k}(N) e^{-i \vec{k} \cdot \vec{x}} \\
& k_{\sigma}
\end{aligned}
$$

Inflation driven by a scalar field

Local background evolves stochastically

$$
\ddot{\phi}+3 H \dot{\phi}+V^{\prime}=0, \quad 3 H^{2}=\frac{1}{2} \dot{\phi}^{2}+V
$$

Local background evolves stochastically

$$
\phi^{\prime \prime}+\left(3-\frac{1}{2} \phi^{\prime 2}\right) \phi^{\prime}+\frac{V^{\prime}}{H^{2}}=0, \quad\left(3-\frac{1}{2} \phi^{\prime 2}\right) H^{2}=V
$$

Local background evolves stochastically

$$
\begin{gathered}
\phi^{\prime}=\pi, \quad \pi^{\prime}=-\left(3-\frac{1}{2} \pi^{2}\right) \pi-\frac{V^{\prime}}{H^{2}} \\
\left(3-\frac{1}{2} \pi^{2}\right) H^{2}=V
\end{gathered}
$$

FLRW-like evolution

Local background evolves stochastically

$$
\begin{gathered}
\phi^{\prime}=\pi+\xi_{\phi}, \quad \pi^{\prime}=-\left(3-\frac{1}{2} \pi^{2}\right) \pi-\frac{V^{\prime}}{H^{2}}+\xi_{\phi} \\
\left(3-\frac{1}{2} \pi^{2}\right) H^{2}=V
\end{gathered}
$$

FLRW-like evolution with noise

Noise originates from quantum vacuum

Short-wavelength equation of motion:

$$
\begin{aligned}
& \delta \phi_{k}^{\prime \prime}=-\left(3-\frac{1}{2} \pi^{2}\right) \delta \phi_{k}^{\prime} \\
& \quad-\left[\frac{k^{2}}{a^{2} H^{2}}+\pi^{2}\left(3-\frac{1}{2} \pi^{2}\right)+2 \pi \frac{V^{\prime}(\phi)}{H^{2}}+\frac{V^{\prime \prime}(\phi)}{H^{2}}\right] \delta \phi_{k}
\end{aligned}
$$

Noise originates from quantum vacuum

Short-wavelength equation of motion:

$$
\begin{aligned}
& \delta \phi_{k}^{\prime \prime}=-\left(3-\frac{1}{2} \pi^{2}\right) \delta \phi_{k}^{\prime} \\
& \quad-\left[\frac{k^{2}}{a^{2} H^{2}}+\pi^{2}\left(3-\frac{1}{2} \pi^{2}\right)+2 \pi \frac{V^{\prime}(\phi)}{H^{2}}+\frac{V^{\prime \prime}(\phi)}{H^{2}}\right] \delta \phi_{k}
\end{aligned}
$$

with Bunch-Davies vacuum,
$\delta \phi_{k}=\frac{1}{\sqrt{2 k} a}, \quad \delta\left(a \phi_{k}\right)^{\prime}=-i \frac{k}{H} \delta \phi_{k}, \quad k \gg a H$

Noise originates from quantum vacuum

Noise from modes crossing k_{σ}; quantum randomness
$\left\langle\xi_{\phi}(N) \xi_{\phi}\left(N^{\prime}\right)\right\rangle=\frac{1}{6 \pi^{2}} \frac{\mathrm{~d} k_{\sigma}^{3}}{\mathrm{~d} N}\left|\delta \phi_{k_{\sigma}}(N)\right|^{2} \delta\left(N-N^{\prime}\right)$,
$\left\langle\xi_{\pi}(N) \xi_{\pi}\left(N^{\prime}\right)\right\rangle=\frac{1}{6 \pi^{2}} \frac{\mathrm{~d} k_{\sigma}^{3}}{\mathrm{~d} N}\left|\delta \phi_{k_{\sigma}}^{\prime}(N)\right|^{2} \delta\left(N-N^{\prime}\right)$,
$\left\langle\xi_{\phi}(N) \xi_{\pi}\left(N^{\prime}\right)\right\rangle=\frac{1}{6 \pi^{2}} \frac{\mathrm{~d} k_{\sigma}^{3}}{\mathrm{~d} N} \delta \phi_{k_{\sigma}}(N) \delta \phi_{k_{\sigma}}^{\prime *}(N) \delta\left(N-N^{\prime}\right)$

Noise originates from quantum vacuum

Noise from modes crossing k_{σ}; quantum randomness

$$
\begin{aligned}
&\left\langle\xi_{\phi}(N) \xi_{\phi}\left(N^{\prime}\right)\right\rangle= \frac{1}{6 \pi^{2}} \frac{\mathrm{~d} k_{\sigma}^{3}}{\mathrm{~d} N}\left|\delta \phi_{k_{\sigma}}(N)\right|^{2} \delta\left(N-N^{\prime}\right) \\
&\left\langle\xi_{\pi}(N) \xi_{\pi}\left(N^{\prime}\right)\right\rangle=\frac{1}{6 \pi^{2}} \frac{\mathrm{~d} k_{\sigma}^{3}}{\mathrm{~d} N}\left|\delta \phi_{k_{\sigma}}^{\prime}(N)\right|^{2} \delta\left(N-N^{\prime}\right) \\
&\left\langle\xi_{\phi}(N) \xi_{\pi}\left(N^{\prime}\right)\right\rangle=\frac{1}{6 \pi^{2}} \frac{\mathrm{~d} k_{\sigma}^{3}}{\mathrm{~d} N} \delta \phi_{k_{\sigma}}(N) \delta \phi_{k_{\sigma}}^{*}(N) \delta\left(N-N^{\prime}\right) \\
& \frac{1}{6 \pi^{2}} \frac{\mathrm{~d} k_{\sigma}^{3}}{\mathrm{~d} N}\left|\delta \phi_{k_{\sigma}}(N)\right|^{2}=\left(1-\epsilon_{1}\right) \frac{k_{\sigma}^{3}}{2 \pi^{2}}\left|\delta \phi_{k_{\sigma}}(N)\right|^{2} \\
& \equiv\left(1-\epsilon_{1}\right) \mathcal{P}_{\phi, \sigma}(N)
\end{aligned}
$$

Comoving curvature perturbation

Linear level:
$\mathcal{R}_{k}=\delta \phi_{k} / \pi$

Comoving curvature perturbation

Linear level:
$\mathcal{R}_{k}=\delta \phi_{k} / \pi$

Non-linear level:
$\mathcal{R}=\Delta N \equiv N-\langle N\rangle$
(" ΔN formalism")

Comoving curvature perturbation freezes

Super-Hubble scales, $k \ll a H$:

$$
\mathcal{R}_{k}^{\prime \prime}+\left(3-\epsilon_{1}+\epsilon_{2}\right) \mathcal{R}_{k}^{\prime}=0
$$

Comoving curvature perturbation freezes

Super-Hubble scales, $k \ll a H$:
$\mathcal{R}_{k}^{\prime \prime}+\left(3-\epsilon_{1}+\epsilon_{2}\right) \mathcal{R}_{k}^{\prime}=0$

For $\epsilon_{2}>\epsilon_{1}-3, \mathcal{R}$ freezes:
$\mathcal{R}_{k}^{\prime} \rightarrow 0$

Solving for curvature perturbations

Evolve ϕ and $\delta \phi_{k}$ for many modes k

Solving for curvature perturbations

Evolve ϕ and $\delta \phi_{k}$ for many modes k

Stop stochastic kicks at fixed $N=N_{c}$

Solving for curvature perturbations

Evolve ϕ and $\delta \phi_{k}$ for many modes k

Stop stochastic kicks at fixed $N=N_{c}$

Evolve to a fixed $\phi=\phi_{\text {final }}$

Solving for curvature perturbations

Evolve ϕ and $\delta \phi_{k}$ for many modes k
Stop stochastic kicks at fixed $N=N_{c}$
Evolve to a fixed $\phi=\phi_{\text {final }}$
Read off $\Delta N=\mathcal{R}(\Delta N$ formalism $)$

History of stochastic inflation

Seminal work [Starobinsky 1986]
ΔN formalism [Fujita 2013]

Primordial black holes [Pattison 2017]

Exponential tails [Ezquiaga 2019]
Beyond de Sitter noise, with bakcreaction
[Figueroa 2020, 2021]

Development I:

Constraining motion to one dimension

Freezing aligns perturbations

$$
\frac{\delta \phi_{k}^{\prime}}{\delta \phi_{k}}=\frac{\pi^{\prime}}{\pi}+\frac{\mathcal{R}_{k}^{\prime}}{\mathcal{R}_{k}}
$$

Perturbations align with the background on an attractor:
$\delta \phi_{k} \rightarrow c \pi$ for $\mathcal{R}_{k}^{\prime} / \mathcal{R}_{k} \rightarrow 0$

Squeezing transfers this to noise:
$\xi_{\pi}=\left.\xi_{\phi}^{\phi} \frac{\delta \phi_{k}^{\prime}}{\delta \phi_{k}}\right|_{k=k_{\sigma}}$

Perturbations frozen when giving kicks

Motion along classical trajectory

Classical trajectory:
$N=\tilde{N}, \phi=\tilde{\phi}, \pi=\tilde{\pi}, \epsilon_{n}=\tilde{\epsilon}_{n}$

Stochastic equation:
$\phi^{\prime}=\tilde{\pi}(\phi)+\xi_{\phi}$

Motion along classical trajectory

Classical trajectory:

$$
N=\tilde{N}, \phi=\tilde{\phi}, \pi=\tilde{\pi}, \epsilon_{n}=\tilde{\epsilon}_{n}
$$

Stochastic equation:

$$
\mathrm{d} \phi / \mathrm{d} N=\tilde{\pi}(\phi)+\sqrt{\left(1-\tilde{\epsilon}_{1}\right) \mathcal{P}_{\phi, \sigma} / \mathrm{d} N} \hat{\xi}_{i}, \quad\left\langle\hat{\xi}_{i} \hat{\xi}_{j}\right\rangle=\delta_{i j}
$$

'Constrained stochastic inflation'

Development II:

Classical number of e-folds as a stochastic variable

Changing from ϕ to \tilde{N}

A change of variables:
$\mathrm{d} \phi=\tilde{\pi}(\tilde{N}) \mathrm{d} \tilde{N}$

Equation becomes:
$\mathrm{d} \tilde{N}=\mathrm{d} N+\sqrt{\left[1-\tilde{\epsilon}_{1}(\tilde{N})\right] \frac{\mathcal{P}_{\phi, \sigma}}{2 \tilde{\epsilon}_{1}(\tilde{N})} \mathrm{d} N} \hat{\xi}_{i}$

Connection to ΔN formalism

At any moment:
$\Delta N=N-\tilde{N}$

This grows from 0 to its final value during stochastic evolution.

Gaussian limit: a standard result

Limit $\Delta N \ll 1: N \approx \tilde{N}$ with independent kicks,
$\mathrm{d} \tilde{N} \approx \mathrm{~d} N+\sqrt{\left[1-\tilde{\epsilon}_{1}(N)\right] \tilde{\mathcal{P}}_{\mathcal{R}, \sigma}(N) \mathrm{d} N} \hat{\xi}_{i}$

Gaussian limit: a standard result

Limit $\Delta N \ll 1: N \approx \tilde{N}$ with independent kicks,
$\mathrm{d} \tilde{N} \approx \mathrm{~d} N+\sqrt{\left[1-\tilde{\epsilon}_{1}(N)\right] \tilde{\mathcal{P}}_{\mathcal{R}, \sigma}(N) \mathrm{d} N} \hat{\xi}_{i}$
ΔN distribution is Gaussian, with variance

$$
\begin{aligned}
& \left\langle\Delta N^{2}\right\rangle=\sum_{i=1}^{n}\left[1-\tilde{\epsilon}_{1}\left(N_{i}\right)\right] \tilde{\mathcal{P}}_{\mathcal{R}, \sigma}\left(N_{i}\right) \mathrm{d} N \\
& \xrightarrow[\epsilon_{1} \ll 1]{\mathrm{d} N \rightarrow 0} \int_{N_{\text {ini }}}^{N_{\mathrm{c}}} \tilde{\mathcal{P}}_{\mathcal{R}, \sigma}(N) \mathrm{d} N \approx \int_{k_{\text {ini }}}^{k_{\mathrm{c}}} \tilde{\mathcal{P}}_{\mathcal{R}}(k) \mathrm{d} \ln k
\end{aligned}
$$

Development III:

Perturbation evolution is independent of stochastic noise

Development III:

Perturbation evolution is independent of stochastic noise ...during constant-roll

Frozen perturbations behave predictably

Frozen perturbations: $\delta \phi_{k} \sim \sqrt{\epsilon_{1}}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d} N} \ln \delta \phi_{k}=\frac{1}{2} \epsilon_{2}$

Frozen perturbations behave predictably

Frozen perturbations: $\delta \phi_{k} \sim \sqrt{\epsilon_{1}}$
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d} N} \ln \delta \phi_{k}=\frac{1}{2} \epsilon_{2}$

Constant roll: $\epsilon_{2}=$ const
Note: this is a constant everywhere in the CR phase!

Match from pre-computed perturbations

Compute perturbations on the classical background:

$$
\mathcal{P}_{\phi, \sigma}=\tilde{\mathcal{P}}_{\phi, \sigma}(N)
$$

Equations become:

$$
\begin{aligned}
& \mathrm{d} \tilde{N}=\mathrm{d} N+\sqrt{\tilde{P}(N, \tilde{N}) \mathrm{d} N} \hat{\xi}_{i}, \\
& \tilde{P}(N, \tilde{N}) \equiv \frac{\tilde{\mathcal{P}}_{\phi, \sigma}(N)}{2 \tilde{E}_{1}(\tilde{N})}, \quad \tilde{E}_{1}(\tilde{N}) \equiv \frac{\tilde{\epsilon}_{1}(\tilde{N})}{1-\tilde{\epsilon}_{1}(\tilde{N})}
\end{aligned}
$$

Development IV:

Importance sampling

Development IV:

Importance sampling
 ...along pre-computed paths

Direct vs importance sampling

Direct sampling: solve the equation by pulling $\hat{\xi}_{i}$ randomly from Gaussian distributions

- A lot of effort to access the tail of $p(\Delta N)$

Direct vs importance sampling

Direct sampling: solve the equation by pulling $\hat{\xi}_{i}$ randomly from Gaussian distributions

■ A lot of effort to access the tail of $p(\Delta N)$
Importance sampling: write $\hat{\xi}_{i}=\bar{\xi}_{i}+\delta \xi_{i}$, and

$$
\begin{aligned}
p & =\frac{1}{(2 \pi)^{n / 2}} \exp \left[-\frac{1}{2} \sum_{i} \hat{\xi}_{i}^{2}\right] \\
& =\exp \left[-\frac{1}{2} \sum_{i}\left(\bar{\xi}_{i}^{2}+2 \bar{\xi}_{i} \delta \xi_{i}\right)\right] \times \exp \left[-\frac{1}{2} \sum_{i} \delta \xi_{i}^{2}\right]
\end{aligned}
$$

Pull $\delta \xi_{i}$ randomly from Gaussian distributions; weight by the prefactor!

Importance sampling around what?

Statistics converge faster around a particular ΔN for a particularly chosen $\bar{\xi}_{i}$

Choose $\bar{\xi}_{i}$ to follow the 'most probable path'

Importance sampling around what?

Statistics converge faster around a particular ΔN for a particularly chosen $\bar{\xi}_{i}$

Choose $\bar{\xi}_{i}$ to follow the 'most probable path'

$$
p=\frac{1}{(2 \pi)^{n / 2}} \exp \left[-S_{\xi}\right],
$$

$$
S_{\xi}=\frac{1}{2} \sum_{i} \hat{\xi}_{i}^{2}
$$

Importance sampling around what?

Statistics converge faster around a particular ΔN for a particularly chosen $\bar{\xi}_{i}$

Choose $\bar{\xi}_{i}$ to follow the 'most probable path'

$$
p=\frac{1}{(2 \pi)^{n / 2}} \exp \left[-S_{\xi}\right],
$$

$$
S_{\xi}=\frac{1}{2} \sum_{i} \hat{\xi}_{i}^{2}=\frac{1}{2} \sum_{i} \frac{\left(\tilde{N}^{\prime}-1\right)^{2}}{2 \tilde{P}(N, \tilde{N})} \mathrm{d} N
$$

Importance sampling around what?

Statistics converge faster around a particular ΔN for a particularly chosen $\bar{\xi}_{i}$

Choose $\bar{\xi}_{i}$ to follow the 'most probable path'

$$
p=\frac{1}{(2 \pi)^{n / 2}} \exp \left[-S_{\xi}\right],
$$

$$
S_{\xi}=\frac{1}{2} \sum_{i} \hat{\xi}_{i}^{2}=\frac{1}{2} \sum_{i} \frac{\left(\tilde{N}^{\prime}-1\right)^{2}}{2 \tilde{P}(N, \tilde{N})} \mathrm{d} N \xrightarrow{\mathrm{~d} N \rightarrow 0}-\int_{N_{\text {ini }}}^{N_{c}} \frac{\left(\tilde{N}^{\prime}-1\right)^{2}}{2 \tilde{P}(N, \tilde{N})} \mathrm{d} N
$$

Importance sampling around what?

Statistics converge faster around a particular ΔN for a particularly chosen $\bar{\xi}_{i}$

Choose $\bar{\xi}_{i}$ to follow the 'most probable path'

$$
p=\frac{1}{(2 \pi)^{n / 2}} \exp \left[-S_{\xi}\right],
$$

$S_{\xi}=\frac{1}{2} \sum_{i} \hat{\xi}_{i}^{2}=\frac{1}{2} \sum_{i} \frac{\left(\tilde{N}^{\prime}-1\right)^{2}}{2 \tilde{P}(N, \tilde{N})} \mathrm{d} N \xrightarrow{\mathrm{~d} N \rightarrow 0}-\int_{N_{\text {ini }}}^{N_{c}} \frac{\left(\tilde{N}^{\prime}-1\right)^{2}}{2 \tilde{P}(N, \tilde{N})} \mathrm{d} N$
$\delta S_{\xi}=0$

Importance sampling around what?

Statistics converge faster around a particular ΔN for a particularly chosen $\bar{\xi}_{i}$

Choose $\bar{\xi}_{i}$ to follow the 'most probable path'

$$
p=\frac{1}{(2 \pi)^{n / 2}} \exp \left[-S_{\xi}\right],
$$

$$
S_{\xi}=\frac{1}{2} \sum_{i} \hat{\xi}_{i}^{2}=\frac{1}{2} \sum_{i} \frac{\left(\tilde{N}^{\prime}-1\right)^{2}}{2 \tilde{P}(N, \tilde{N})} \mathrm{d} N \xrightarrow{\mathrm{~d} N \rightarrow 0}-\int_{N_{\text {ini }} \frac{1}{2}}^{N_{c}} \frac{\left(\tilde{N}^{\prime}-1\right)^{2}}{2 \tilde{P}(N, \tilde{N})} \mathrm{d} N
$$

$$
\delta S_{\xi}=0 \Rightarrow \tilde{N}^{\prime \prime}-\frac{\tilde{E}_{1}^{\prime}(\tilde{N})}{2 \tilde{E}_{1}(\tilde{N})}\left(1-\tilde{N}^{\prime 2}\right)+\frac{\tilde{\mathcal{P}}_{\mathcal{P}, \sigma}^{\prime}(N)}{\mathcal{P}_{\phi, \sigma}(N)}\left(1-\tilde{N}^{\prime}\right)=0
$$

Most probable paths

Solve the most probable path from
$\tilde{N}^{\prime \prime}-\frac{\tilde{E}_{1}^{\prime}(\tilde{N})}{2 \tilde{E}_{1}(\tilde{N})}\left(1-\tilde{N}^{\prime 2}\right)+\frac{\tilde{\mathcal{P}}_{\phi, \sigma}^{\prime}(N)}{\tilde{\mathcal{P}}_{\phi, \sigma}(N)}\left(1-\tilde{N}^{\prime}\right)=0$
Boundary conditions: $\tilde{N}=N$ at $N_{\text {ini }} ; \tilde{N}=N-\Delta N$ at N_{c}

Such a path maximizes the probability density for a fixed ΔN

Most probable paths

Most probable paths

Analytical estimate

Estimate:
$p(\Delta N) \mathrm{d}(\Delta N)=\int_{D(\Delta N)} \frac{\mathrm{d}^{n} \hat{\xi}_{i}}{(2 \pi)^{n / 2}} \exp \left[-\frac{1}{2} \sum_{i} \hat{\xi}_{i}^{2}\right]$

Analytical estimate

Estimate:
$p(\Delta N) \mathrm{d}(\Delta N) \approx \frac{\sqrt{\sum_{i} \bar{\xi}_{i}^{2}}}{|\Delta N|} \frac{\mathrm{d}(\Delta N)}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2} \sum_{i} \bar{\xi}_{i}^{2}\right]$

Importance sampling = computing the volume factor numerically

Numerics

Compare two cases:

Backreaction computation from [Figueroa 2020, 2021]
■ 1024×10^{8} runs, $p(\Delta N)$ resolved continuously from -0.69 to 0.95

Constrained importance sampling

- 26×10^{4} runs, $p(\Delta N)$ resolved from -1 to 1.5 in steps of 0.1

Numerics

Numerics

Backreaction: million CPU hours

Constrained importance sampling: 2 s
Time saving of factor 10^{9}

Summary

Direct sampling: see non-Gaussian tail with a million CPU hours or more

A number of developments:
■ Frozen noise constrains motion to one dimension
■ Use classical number of e-folds as a stochastic variable
■ Perturbations don't depend on stochasticity in constant roll

- Importance sampling around most probable paths

Get same result within seconds

Conclusions

Non-Gaussianity is important for inflationary PBH formation
Stochastic computation beyond de Sitter noise is needed
A number of analytical insights can simplify the computation
Goal: make accurate PBH computations accesible to everyone

Thank you!

Gaussian limit

[present Gaussian limit... IF time]

Exponential tail

[present exponential tail... IF time]

