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Cosmic inflation
Accelerating expansion of space in the early universe

Cosmological perturbations
Cosmic microwave background, ...

Primordial black holes (PBHs)
Dark matter candidate
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Concepts

Stochastic inflation

Includes non-linear effects
Crucial for the strongest, rarest perturbations
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Inflation driven by a scalar field

S =

∫
d4x

√−g

[
1

2
R− 1

2
∂µφ∂µφ− V (φ)

]

Divide into short-wavelength and coarse-grained parts:

φ(N, x⃗) ≡ ϕ(N, x⃗) + δϕ(N, x⃗)

=
∫
k<kσ

d3k
(2π)2/3

ϕk(N)e−ik⃗·x⃗ +
∫
k>kσ

d3k
(2π)2/3

δϕk(N)e−ik⃗·x⃗

kσ ≡ σaH
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Inflation driven by a scalar field

φ

V (φ)

[Figueroa 2020, 2021]

4/36



Inflation driven by a scalar field

φ

V (φ)

[Figueroa 2020, 2021]

Plateau

Feature
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Inflation driven by a scalar field

φ

V (φ)

Slow-roll (SR), ϵ1, |ϵ2| ≪ 1

Ultra-slow-roll (USR), ϵ2 ≲ −6

Constant roll (CR), ϵ2 ≳ 0

ϵ1 ≡ −∂N lnH,
ϵ2 ≡ ∂N ln ϵ1
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Inflation driven by a scalar field

φ

V (φ)

CMB

Strong perturbations: PBHs
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Local background evolves stochastically

ϕ̈+ 3Hϕ̇+ V ′ = 0 , 3H2 =
1

2
ϕ̇2 + V
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ϕ′′ +

(
3− 1

2
ϕ′2

)
ϕ′ +

V ′

H2
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(
3− 1

2
ϕ′2

)
H2 = V
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2
π2

)
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Local background evolves stochastically

ϕ′ = π + ξϕ , π′ = −
(
3− 1

2
π2

)
π − V ′

H2
+ ξϕ(

3− 1

2
π2

)
H2 = V

FLRW-like evolution with noise
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Noise originates from quantum vacuum

Short-wavelength equation of motion:

δϕ′′
k = −

(
3− 1

2
π2
)
δϕ′

k

−
[

k2

a2H2 + π2
(
3− 1

2
π2
)
+ 2π V ′(ϕ)

H2 + V ′′(ϕ)
H2

]
δϕk

with Bunch-Davies vacuum,

δϕk =
1√
2ka

, δ(aϕk)
′ = −i k

H
δϕk , k ≫ aH
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Noise originates from quantum vacuum

Noise from modes crossing kσ; quantum randomness

⟨ξϕ(N)ξϕ(N
′)⟩ = 1

6π2

dk3σ
dN

|δϕkσ(N)|2δ(N −N ′) ,

⟨ξπ(N)ξπ(N
′)⟩ = 1

6π2

dk3σ
dN

|δϕ′
kσ
(N)|2δ(N −N ′) ,

⟨ξϕ(N)ξπ(N
′)⟩ = 1

6π2

dk3σ
dN

δϕkσ(N)δϕ′∗
kσ
(N)δ(N −N ′)

1
6π2

dk3σ
dN

|δϕkσ(N)|2 = (1− ϵ1)
k3σ
2π2 |δϕkσ(N)|2

≡ (1− ϵ1)Pϕ,σ(N)
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Comoving curvature perturbation

Linear level:

Rk = δϕk/π

Non-linear level:

R = ∆N ≡ N − ⟨N⟩
(“∆N formalism”)
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Comoving curvature perturbation freezes

Super-Hubble scales, k ≪ aH:

R′′
k + (3− ϵ1 + ϵ2)R′

k = 0

For ϵ2 > ϵ1 − 3, R freezes:

R′
k → 0
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Solving for curvature perturbations

Evolve ϕ and δϕk for many modes k

Stop stochastic kicks at fixed N = Nc

Evolve to a fixed ϕ = ϕfinal

Read off ∆N = R (∆N formalism)
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Gaussian fit

Exponential tail

Collapse threshold

11/36



History of stochastic inflation

Seminal work [Starobinsky 1986]

∆N formalism [Fujita 2013]

Primordial black holes [Pattison 2017]

Exponential tails [Ezquiaga 2019]

Beyond de Sitter noise, with bakcreaction
[Figueroa 2020, 2021]
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Development I:

Constraining motion to one
dimension
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Freezing aligns perturbations

δϕ′
k

δϕk

=
π′

π
+

R′
k

Rk

Perturbations align with the background on an attractor:

δϕk → c π for R′
k/Rk → 0

Squeezing transfers this to noise:

ξπ = ξϕ
δϕ′

k

δϕk

∣∣∣∣
k=kσ
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Perturbations frozen when giving kicks

C
M
B

en
d

N
c

U
S
R
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d

N
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U
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R



ℛ(N=Nend)



ℛ(N=Ncoarse)
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Motion along classical trajectory

Classical trajectory:

N = Ñ , ϕ = ϕ̃, π = π̃, ϵn = ϵ̃n

Stochastic equation:

ϕ′ = π̃(ϕ) + ξϕ

‘Constrained stochastic inflation’
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Motion along classical trajectory

Classical trajectory:

N = Ñ , ϕ = ϕ̃, π = π̃, ϵn = ϵ̃n

Stochastic equation:

dϕ/dN = π̃(ϕ) +
√

(1− ϵ̃1)Pϕ,σ/dN ξ̂i ,
〈
ξ̂iξ̂j

〉
= δij

‘Constrained stochastic inflation’
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Development II:

Classical number of e-folds as
a stochastic variable
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Changing from ϕ to Ñ

A change of variables:

dϕ = π̃(Ñ)dÑ

Equation becomes:

dÑ = dN +

√[
1− ϵ̃1(Ñ)

]
Pϕ,σ

2ϵ̃1(Ñ)
dN ξ̂i
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Connection to ∆N formalism

At any moment:

∆N = N − Ñ

This grows from 0 to its final value during stochastic
evolution.
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Gaussian limit: a standard result

Limit ∆N ≪ 1: N ≈ Ñ with independent kicks,

dÑ ≈ dN +
√

[1− ϵ̃1(N)]P̃R,σ(N)dN ξ̂i

∆N distribution is Gaussian, with variance

⟨∆N2⟩ = ∑n
i=1 [1− ϵ̃1(Ni)]P̃R,σ(Ni)dN

dN→0−−−→
ϵ1≪1

∫ Nc

Nini
P̃R,σ(N)dN ≈

∫ kc

kini
P̃R(k) d ln k
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Development III:

Perturbation evolution is
independent of stochastic noise

...during constant-roll
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Frozen perturbations behave predictably

Frozen perturbations: δϕk ∼
√
ϵ1

⇒ d
dN

ln δϕk =
1
2
ϵ2

Constant roll: ϵ2 = const

Note: this is a constant everywhere in the CR phase!
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Match from pre-computed perturbations

Compute perturbations on the classical background:

Pϕ,σ = P̃ϕ,σ(N)

Equations become:

dÑ = dN +
√

P̃ (N, Ñ)dN ξ̂i ,

P̃ (N, Ñ) ≡ P̃ϕ,σ(N)

2Ẽ1(Ñ)
, Ẽ1(Ñ) ≡ ϵ̃1(Ñ)

1−ϵ̃1(Ñ)
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Development IV:

Importance sampling
...along pre-computed paths
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Direct vs importance sampling

Direct sampling: solve the equation by pulling ξ̂i randomly
from Gaussian distributions

A lot of effort to access the tail of p(∆N)

Importance sampling: write ξ̂i = ξ̄i + δξi, and

p = 1
(2π)n/2 exp

[
−1

2

∑
i ξ̂

2
i

]
= exp

[
−1

2

∑
i

(
ξ̄2i + 2ξ̄iδξi

)]
× exp

[
−1

2

∑
i δξ

2
i

]
Pull δξi randomly from Gaussian distributions; weight by the
prefactor!
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Importance sampling around what?

Statistics converge faster around a particular ∆N for a
particularly chosen ξ̄i

Choose ξ̄i to follow the ‘most probable path’

p = 1
(2π)n/2 exp[−Sξ] ,

Sξ =
1
2

∑
i ξ̂

2
i = 1

2

∑
i
(Ñ ′−1)2

2P̃ (N,Ñ)
dN

dN→0−−−→ −
∫ Nc

Nini

(Ñ ′−1)2

2P̃ (N,Ñ)
dN

δSξ = 0 ⇒ Ñ ′′ − Ẽ′
1(Ñ)

2Ẽ1(Ñ)

(
1− Ñ ′2

)
+

P̃ ′
ϕ,σ(N)

P̃ϕ,σ(N)

(
1− Ñ ′

)
= 0
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dN

δSξ = 0 ⇒ Ñ ′′ − Ẽ′
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(Ñ ′−1)2

2P̃ (N,Ñ)
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1(Ñ)
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1− Ñ ′2

)
+

P̃ ′
ϕ,σ(N)

P̃ϕ,σ(N)

(
1− Ñ ′
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1(Ñ)
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Most probable paths

Solve the most probable path from

Ñ ′′ − Ẽ′
1(Ñ)

2Ẽ1(Ñ)

(
1− Ñ ′2

)
+

P̃ ′
ϕ,σ(N)

P̃ϕ,σ(N)

(
1− Ñ ′

)
= 0

Boundary conditions: Ñ = N at Nini; Ñ = N −∆N at Nc

Such a path maximizes the probability density for a fixed
∆N

27/36



Most probable paths

USR-exit N
c

N
in

i
N
  =N

N
 =N

-Δ
N

ΔN
=0.5

33 34 35 36 37 38 39 40

33

34
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N

N
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Most probable paths

USR-exit N
c

N
in
i

P

N , N




-0.1
ξi

dN

-Q. drift

33 34 35 36 37 38 39 40
0.0

0.1

0.2
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Q
ua
nt
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dr
if
t
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Analytical estimate

Estimate:

p(∆N) d(∆N) =
∫
D(∆N)

dnξ̂i
(2π)n/2 exp

[
−1

2

∑
i ξ̂

2
i

]

Importance sampling = computing the volume factor
numerically
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p(∆N) d(∆N) ≈
√∑

i ξ̄
2
i

|∆N |
d(∆N)√

2π
exp

[
−1

2

∑
i ξ̄

2
i

]
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Numerics

Compare two cases:

Backreaction computation from [Figueroa 2020, 2021]
1024× 108 runs, p(∆N) resolved continuously from
−0.69 to 0.95

Constrained importance sampling
26× 104 runs, p(∆N) resolved from −1 to 1.5 in steps
of 0.1
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Numerics
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Numerics

Backreaction: million CPU hours

Constrained importance sampling: 2s

Time saving of factor 109
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Summary

Direct sampling: see non-Gaussian tail with a million CPU
hours or more

A number of developments:
Frozen noise constrains motion to one dimension
Use classical number of e-folds as a stochastic variable
Perturbations don’t depend on stochasticity in constant
roll
Importance sampling around most probable paths

Get same result within seconds
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Conclusions

Non-Gaussianity is important for inflationary PBH formation

Stochastic computation beyond de Sitter noise is needed

A number of analytical insights can simplify the computation

Goal: make accurate PBH computations accesible to
everyone
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Thank you!
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Gaussian limit

[present Gaussian limit... IF time]
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Exponential tail

[present exponential tail... IF time]
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