Stochastic constant-roll inflation: a tool to compute primordial black hole statistics

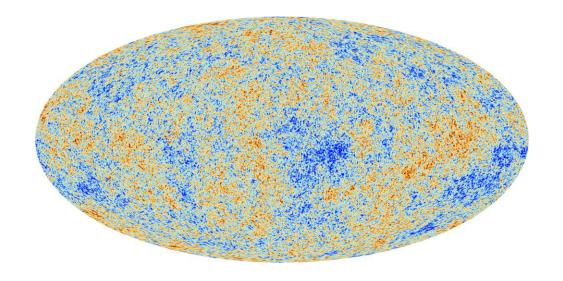
COSMO'23, Madrid, Sep 2023 Eemeli Tomberg, NICPB Tallinn

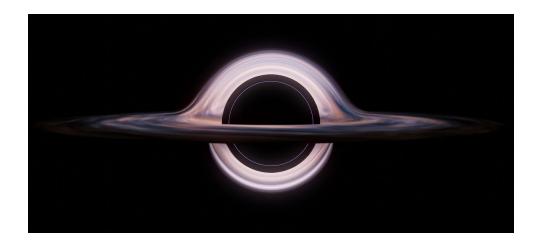
Based on 2012.06551, 2111.07437, 2210.17441, 2304.10903 in collaboration with D. Figueroa, S. Raatikainen, S. Räsänen

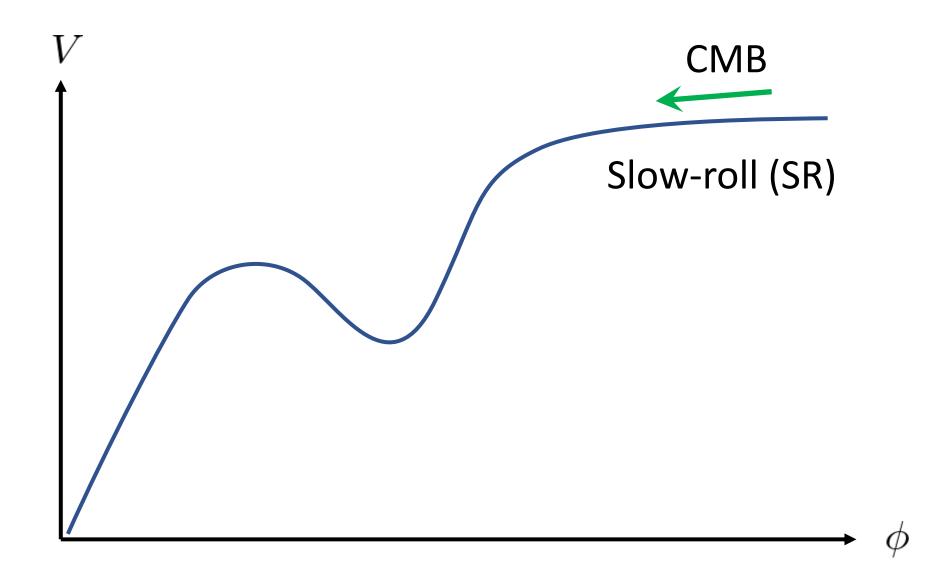
Primordial perturbations

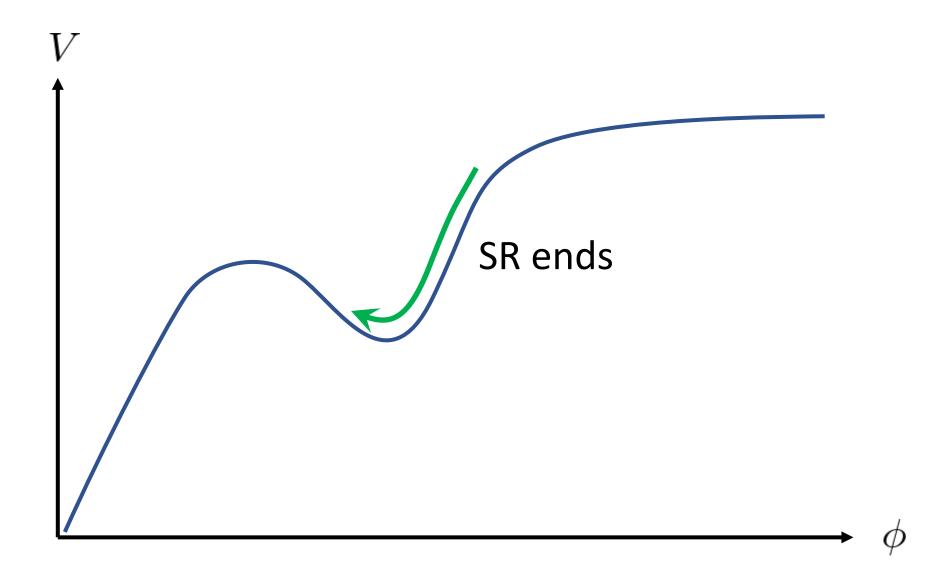
Cosmic inflation: quantum fluctuations

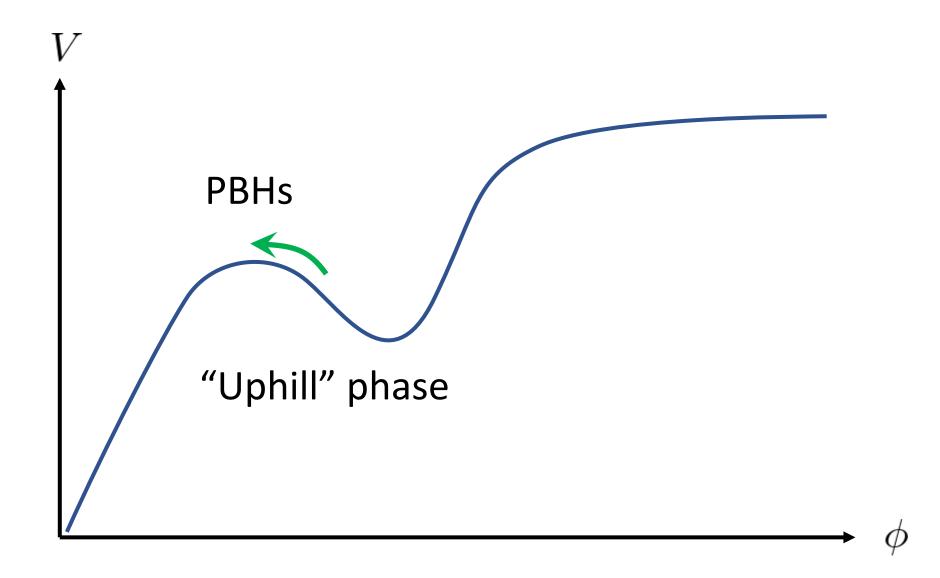
Later: strongest collapse into black holes

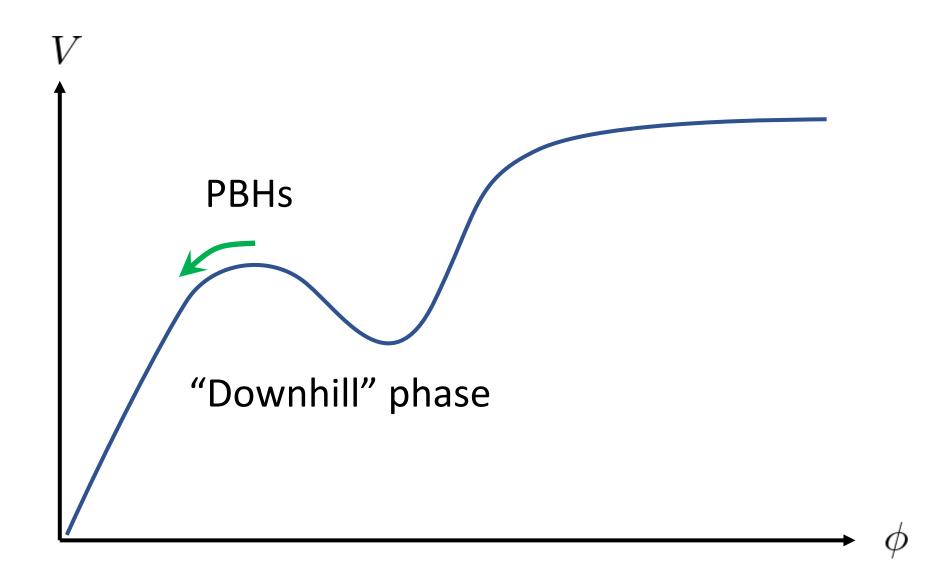


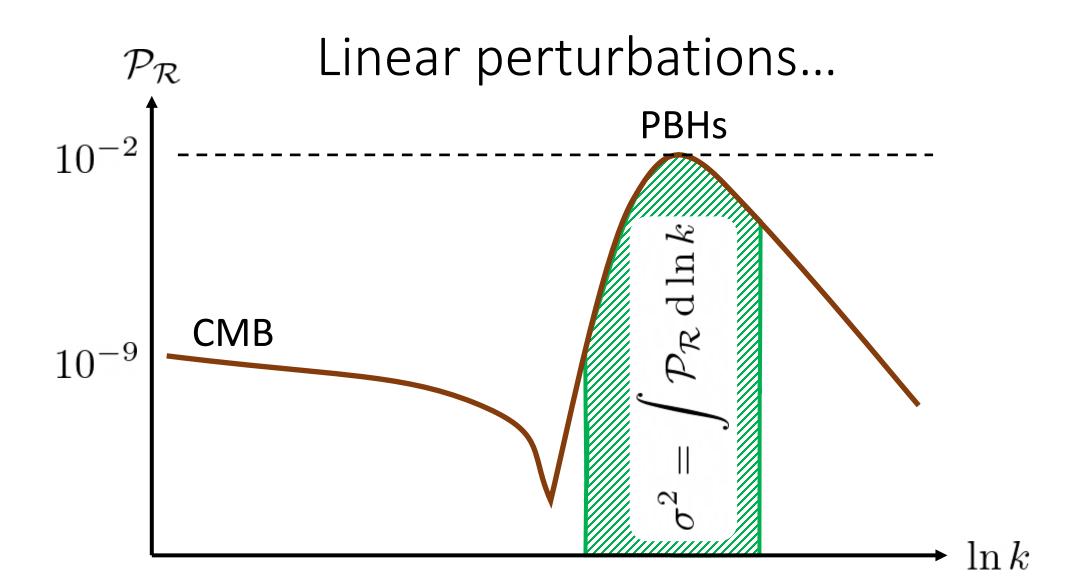


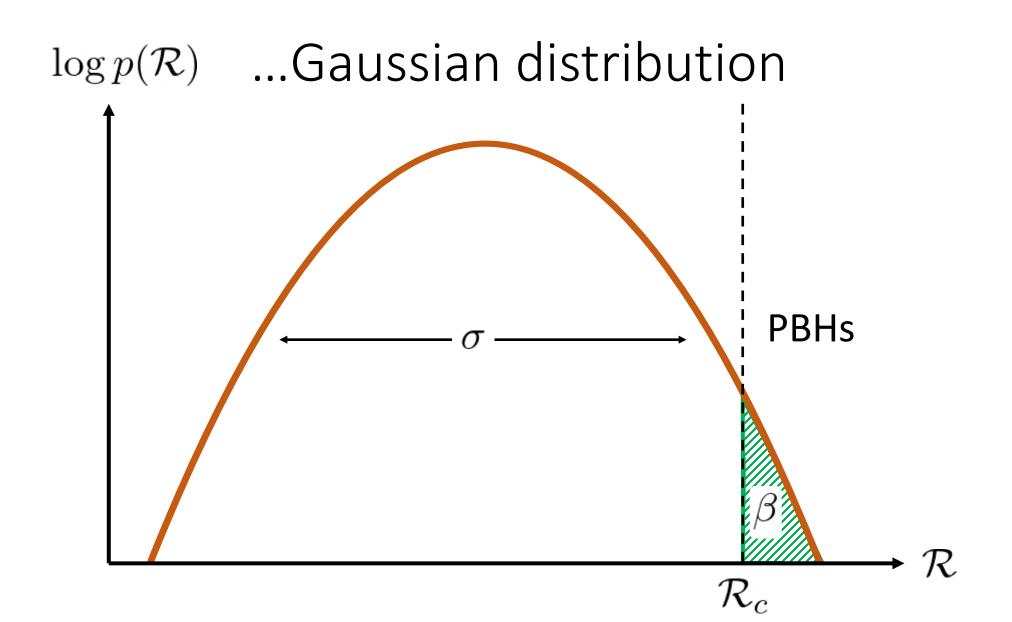








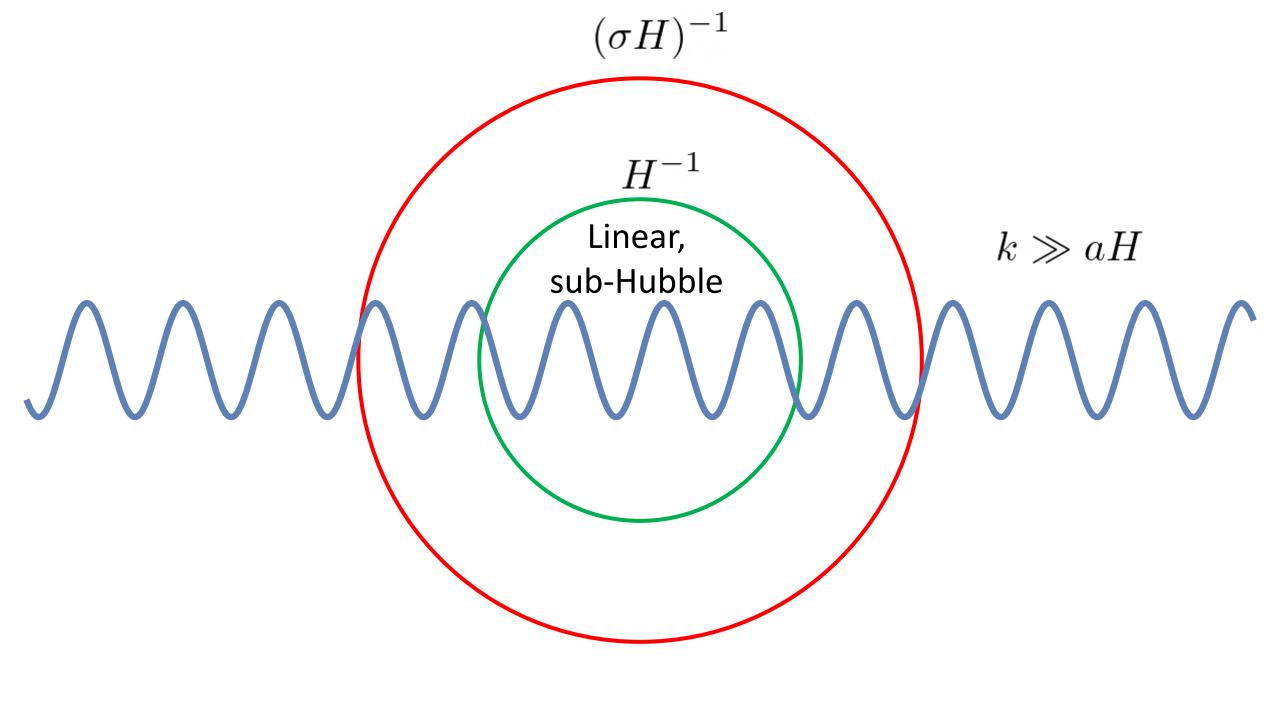


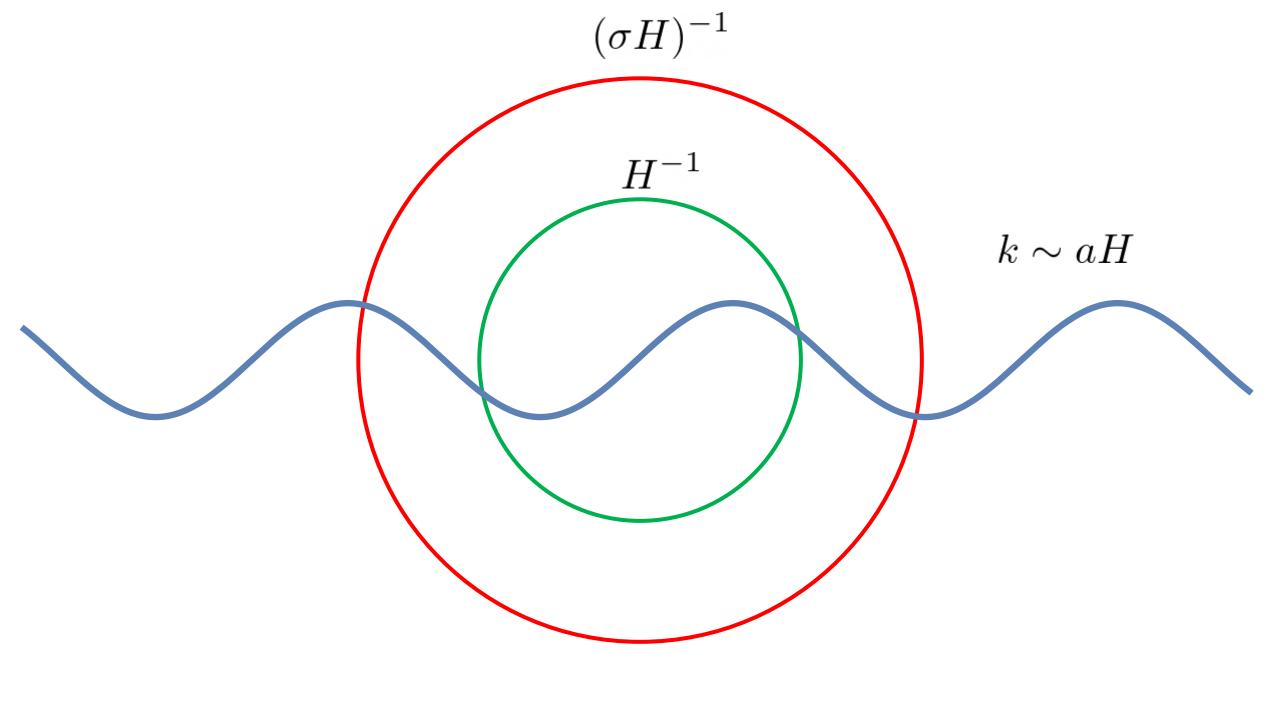


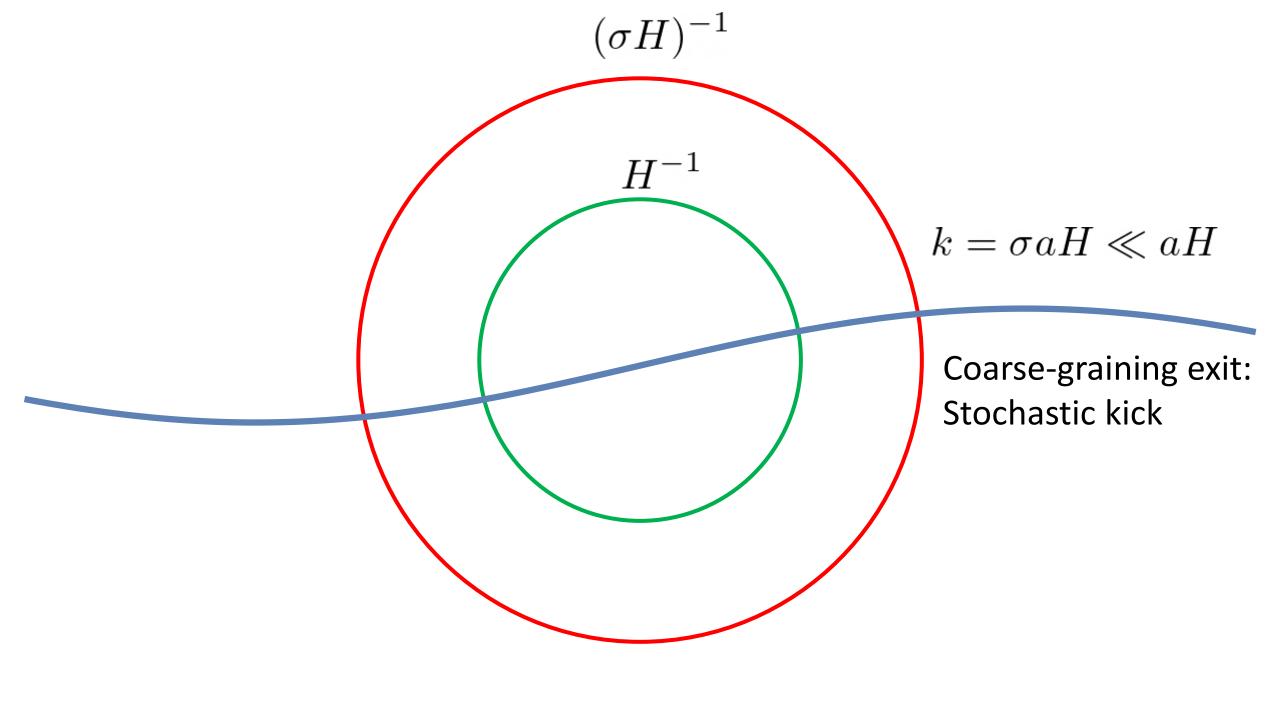
Stochastic inflation

Inflaton field: $\phi + \delta \phi$ Coarse-grained: Short-wavelength: linear perturbation theory

Patched together at the coarse-graining scale $k=k_{\sigma}\equiv\sigma aH$







Stochastic inflation

 $\mathcal{R} = \Delta N \equiv N - \bar{N}$

$$\phi' = \pi + \xi_{\phi}, \quad \pi' = -\left(3 - \frac{1}{2}\pi^{2}\right)\pi - \frac{V'(\phi)}{H^{2}} + \xi_{\pi}, \quad H^{2} = \frac{V(\phi)}{3 - \frac{1}{2}\pi^{2}}$$

$$\delta\phi''_{k} = -\left(3 - \frac{1}{2}\pi^{2}\right)\delta\phi'_{k} - \left[\frac{k^{2}}{a^{2}H^{2}} + \pi^{2}\left(3 - \frac{1}{2}\pi^{2}\right) + 2\pi\frac{V'(\phi)}{H^{2}} + \frac{V''(\phi)}{H^{2}}\right]\delta\phi_{k}$$

$$\langle \xi_{\phi}(N)\xi_{\phi}(N')\rangle = \frac{1}{6\pi^{2}}\frac{dk_{\sigma}^{3}}{dN}|\delta\phi_{k_{\sigma}}(N)|^{2}\delta(N - N')$$

$$\langle \xi_{\pi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^{2}}\frac{dk_{\sigma}^{3}}{dN}|\delta\phi'_{k_{\sigma}}(N)|^{2}\delta(N - N')$$

$$\langle \xi_{\phi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^{2}}\frac{dk_{\sigma}^{3}}{dN}\delta\phi_{k_{\sigma}}(N)\delta\phi'^{*}_{k_{\sigma}}(N)\delta(N - N')$$

Stochastic inflation

$$\phi' = \pi + \xi_{\phi}, \quad \pi' = -\left(3 - \frac{1}{2}\pi^{2}\right)\pi - V'$$

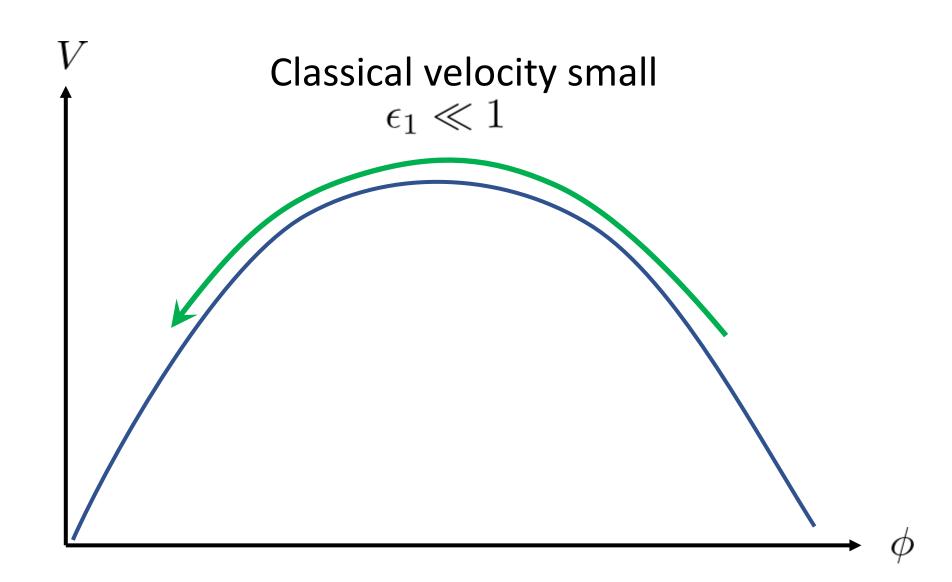
$$\delta\phi''_{k} = -(3 - \frac{1}{2}\pi^{2})\delta\phi'_{k} - \left[\frac{k^{2}}{2}\right] + 2\pi \frac{V'(\phi)}{H^{2}} + \frac{V''(\phi)}{H^{2}} \delta\phi_{k}$$

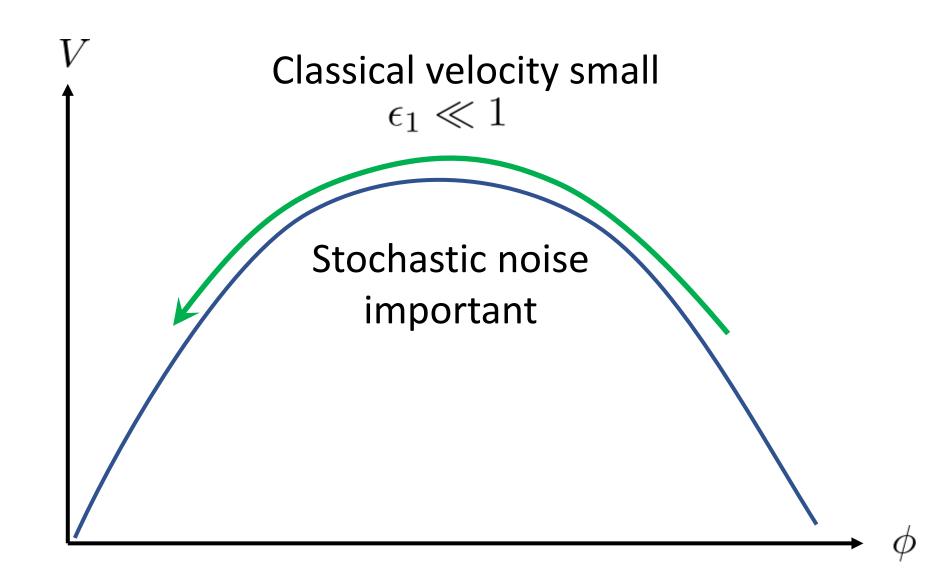
$$\langle \xi_{+}(N)\xi_{+}(N')\rangle - \frac{1}{2} \delta\phi_{k}$$

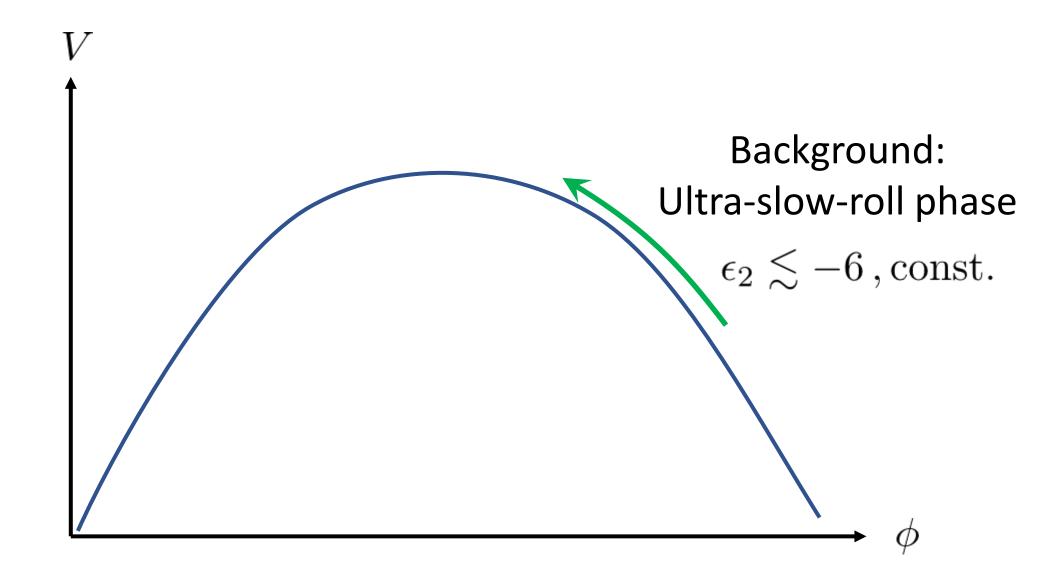
$$\langle \xi_{\pi}(N)\xi_{\pi}(N')\rangle = k_{\sigma}(N)|^{2}\delta(N-N')$$

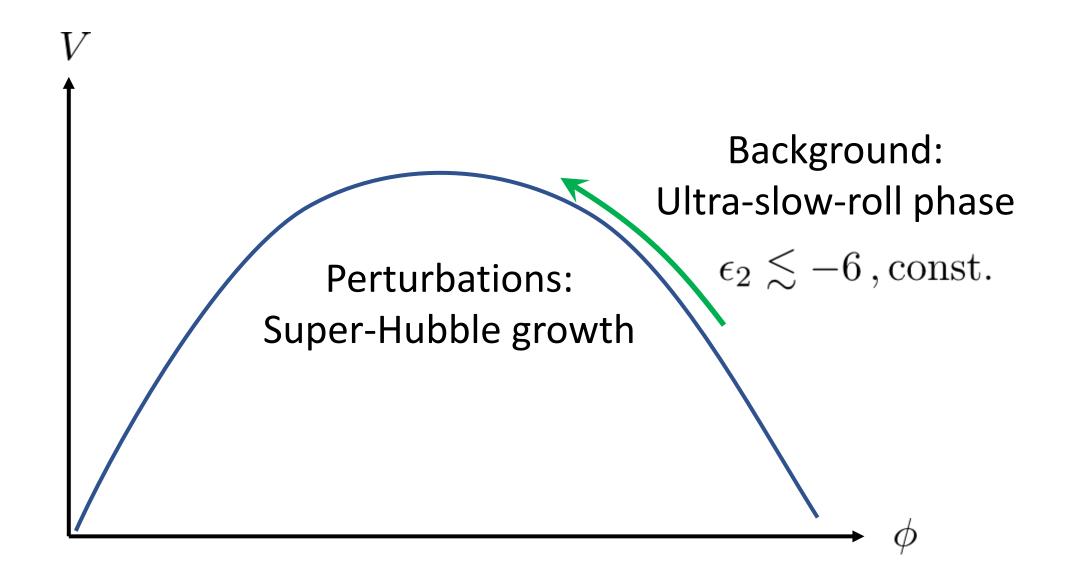
$$\langle \xi_{\phi}(N) \xi_{\pi}(N) \rangle = \frac{c_{\sigma}^{\prime}}{\mathrm{d}N} \delta \phi_{k_{\sigma}}(N) \delta \phi_{k_{\sigma}}^{\prime *}(N) \delta (N-N')$$

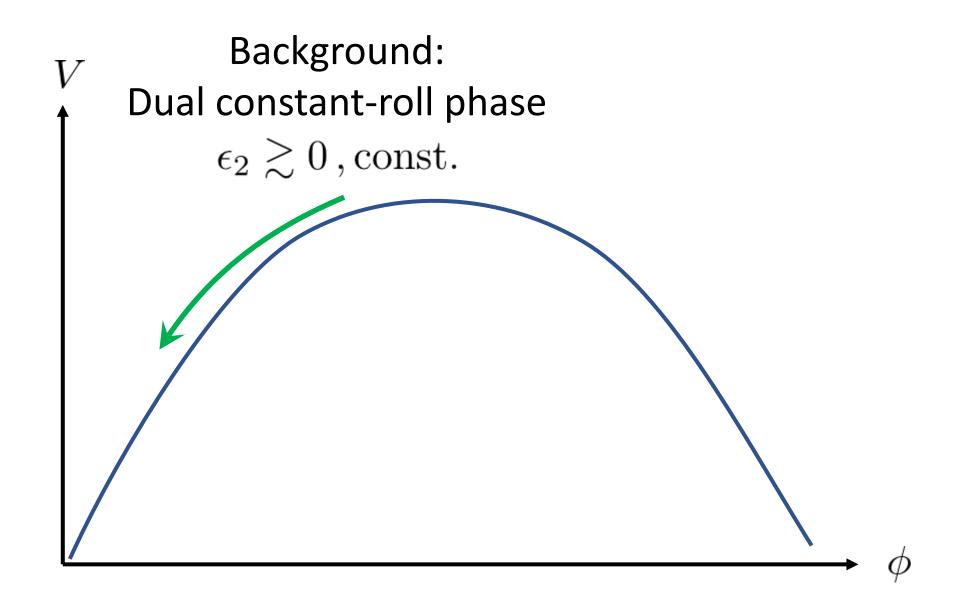
$$\mathcal{R} = \Delta N \equiv N - \bar{N}$$











Background: Dual constant-roll phase $\epsilon_2 \gtrsim 0$, const. Perturbations: Frozen Amplified modes exit

Equations simplify in dual constant-roll phase

Adiabatic perturbations: motion along classical trajectory only

Noise independent of background stochasticity: pre-compute power spectrum

Simplified stochastic equation:

$$d\phi = \frac{\epsilon_2}{2} (\phi - \phi_0) dN + \frac{\epsilon_2}{2} \phi_0 e^{\frac{\epsilon_2}{2} N} \sqrt{\mathcal{P}_{\mathcal{R}}(k_\sigma)} dN \,\hat{\xi}_N$$

$$\langle \hat{\xi}_N \hat{\xi}_{N'} \rangle = \delta_{NN'}$$

Simplified stochastic equation:

$$d\phi = \frac{\epsilon_2}{2} (\phi - \phi_0) dN + \frac{\epsilon_2}{2} \phi_0 e^{\frac{\epsilon_2}{2} N} \sqrt{\mathcal{P}_{\mathcal{R}}(k_\sigma)} dN \,\hat{\xi}_N$$

$$\phi(N) = \phi_0 \left(1 - e^{\frac{\epsilon_2}{2} N} \right) + \frac{\epsilon_2}{2} \phi_0 e^{\frac{\epsilon_2}{2} N} X(N)$$

$$\langle \hat{\xi}_N \hat{\xi}_{N'} \rangle = \delta_{NN'}$$

$$X(N) \equiv \sum_{k=k_{\rm ini}}^{k=k_{\sigma}(N)} \sqrt{\mathcal{P}_{\mathcal{R}}(k) \, \mathrm{d} \ln k} \, \hat{\xi}_k$$

ΔN distribution

$$p(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{X^2}{2\sigma^2}}, \quad \sigma^2 \equiv \int_{k_{\text{ini}}}^{k_{\text{end}}} \mathcal{P}_{\mathcal{R}}(k) \, d \ln k$$

ΔN distribution

$$p(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{X^2}{2\sigma^2}}, \quad \sigma^2 \equiv \int_{k_{\text{ini}}}^{k_{\text{end}}} \mathcal{P}_{\mathcal{R}}(k) \, d \ln k$$

$$X = \frac{2}{\epsilon_2} \left(1 - e^{-\frac{\epsilon_2}{2}\Delta N} \right)$$

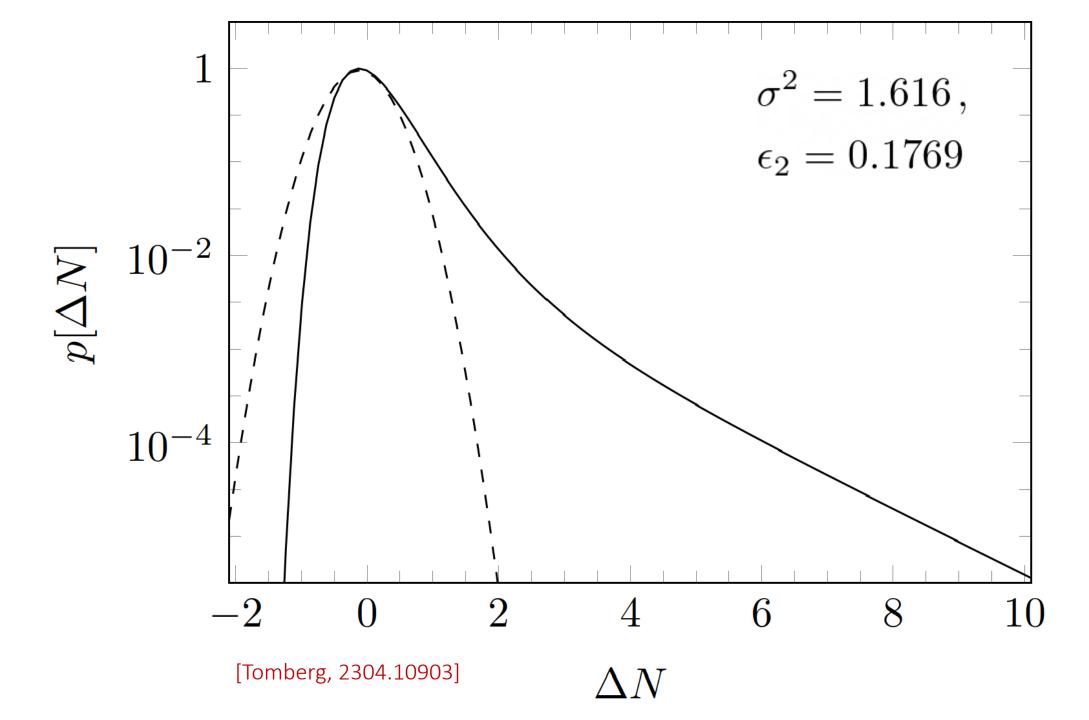
ΔN distribution

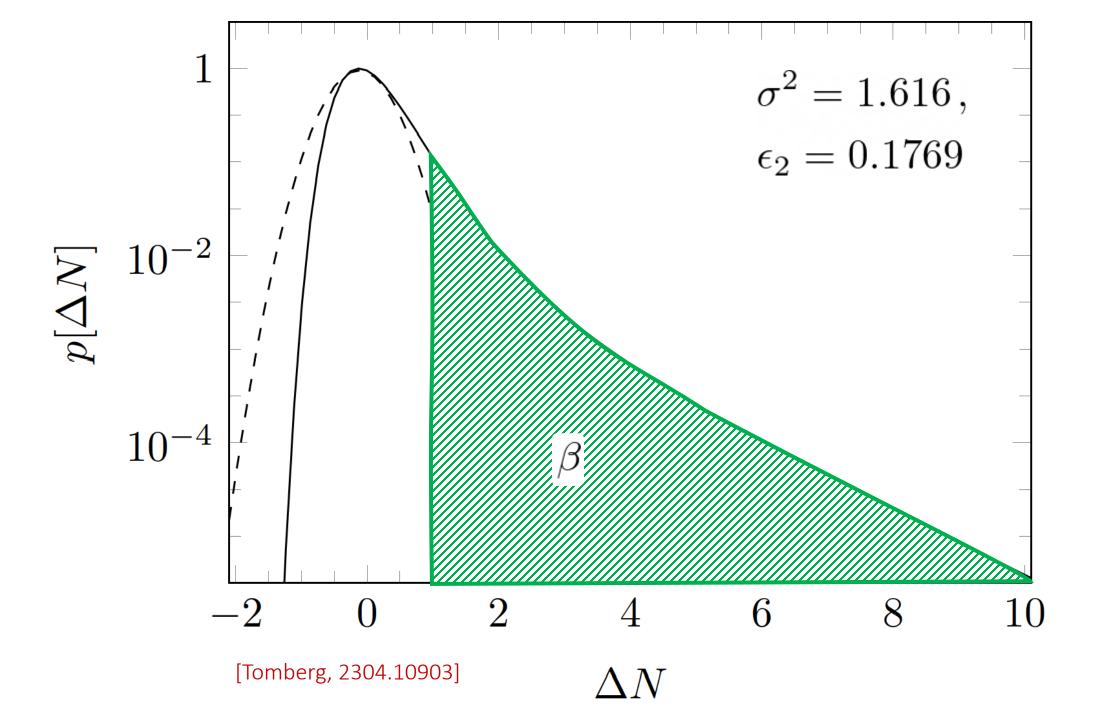
$$p(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{X^2}{2\sigma^2}}, \quad \sigma^2 \equiv \int_{k_{\text{ini}}}^{\kappa_{\text{end}}} \mathcal{P}_{\mathcal{R}}(k) \, \mathrm{d} \ln k$$

$$X = \frac{2}{\epsilon_2} \left(1 - e^{-\frac{\epsilon_2}{2}\Delta N} \right)$$

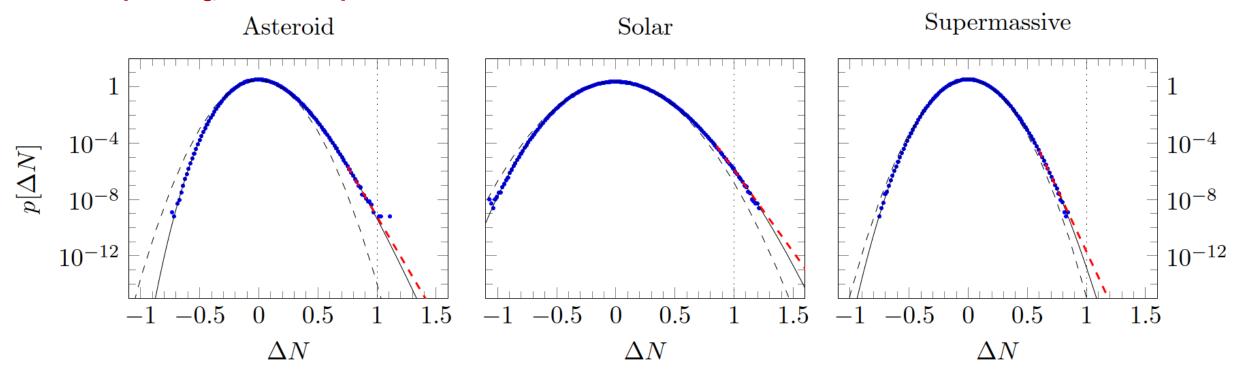
$$p(\Delta N) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{2}{\sigma^2 \epsilon_2^2} \left(1 - e^{-\frac{\epsilon_2}{2}\Delta N}\right)^2 - \frac{\epsilon_2}{2}\Delta N\right]$$

$$\Delta N = \mathcal{R}$$





[Tomberg, 2304.10903]



Black = Constant-roll approximation

Dashed = Gaussian fit

Blue = numerical computation

Red = numerical extrapolation

Sneak peek: compaction function

$$C(r) = \frac{2}{3} (1 - [1 + r\zeta'(r)]^2)$$

$$r\zeta'(r) = \sum_{k} \left[-\frac{\hat{\xi}_{k}}{1 - \frac{\epsilon_{2}}{2}X(k)} \sqrt{\mathcal{P}_{\zeta}(k) \operatorname{d} \ln k} + \frac{\epsilon_{2}}{4\left[1 - \frac{\epsilon_{2}}{2}X(k)\right]^{2}} \mathcal{P}_{\zeta}(k) \operatorname{d} \ln k \right]$$

$$\times \left[\cos(kr) - \frac{\sin(kr)}{kr}\right]$$

Conclusions

Stochastic inflation introduces non-Gaussian corrections to PBH statistics

Constant-roll inflation is at the heart of PBH inflation models

$$p(\mathcal{R}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{2}{\sigma^2 \epsilon_2^2} \left(1 - e^{-\frac{\epsilon_2}{2}\mathcal{R}}\right)^2 - \frac{\epsilon_2}{2}\mathcal{R}\right]$$

[Karam et al, 2205.13540]

