Primordial black holes and stochastic inflation

University of Nottingham, 15 October 2024 Eemeli Tomberg, Lancaster University

Based on 2012.06551, 2111.07437, 2210.17441, 2304.10903, 2312.12911, 2409.12950 in collaboration with D. Figueroa, S. Raatikainen, S. Räsänen, et al

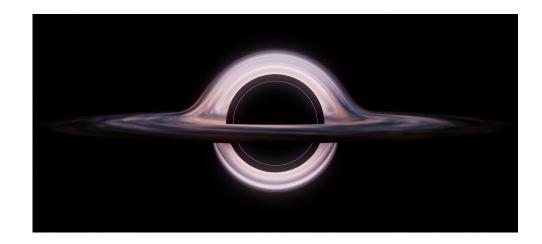
Why primordial black holes (PBHs)?

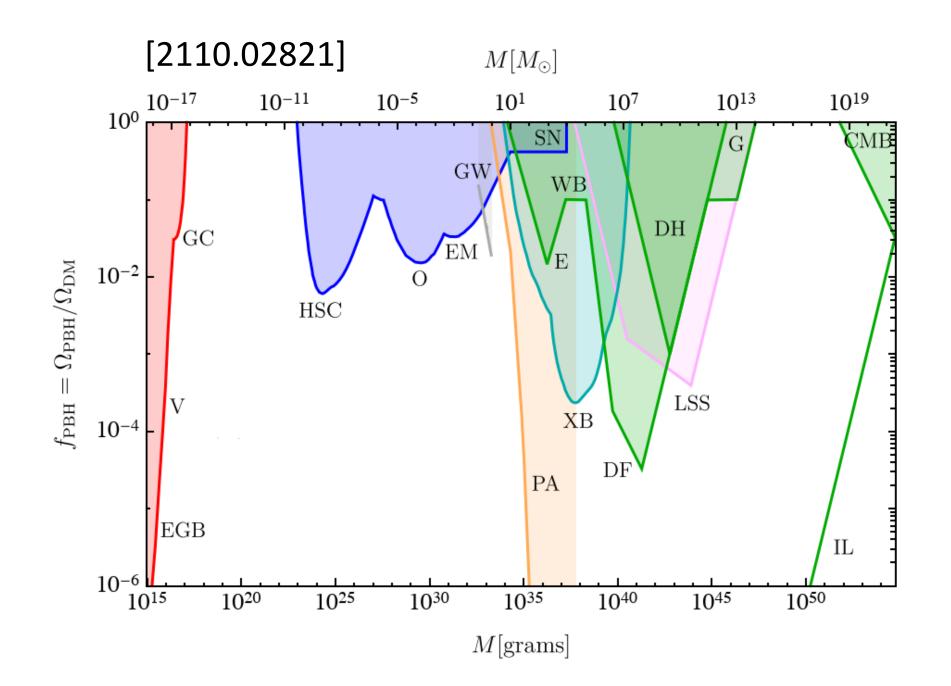
Black holes formed in early Universe

- Carry information of conditions there (small-scale perturbations)
- Any mass (Hawking evaporation?)

Applications in cosmology

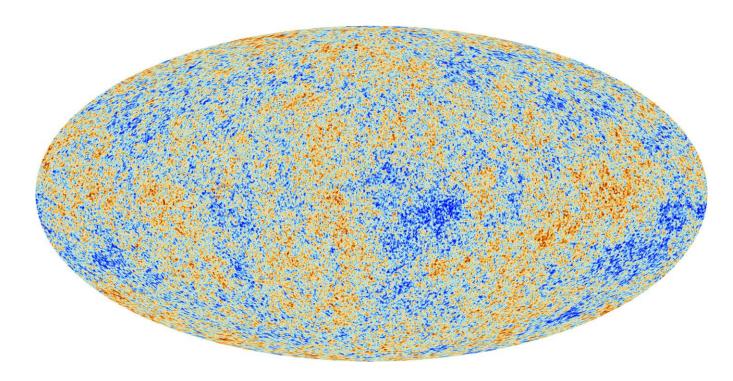
- Dark matter candidate
- Seeds of supermassive black holes
- GW source





Black holes from primordial perturbations

Cosmic inflation: quantum fluctuations Later: strongest collapse into black holes



I. (Semi-)inflection point inflation

II. Stochastic inflation

III. Black hole statistics

IV. An axion-curvaton model

I. (Semi-)inflection point inflation

II. Stochastic inflation

III. Black hole statistics

IV. An axion-curvaton model

Single-field inflation is simple

Action:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} \partial^\mu \varphi \partial_\mu \varphi - V(\varphi) \right]$$

Single-field inflation is simple

Action:

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} \partial^\mu \varphi \partial_\mu \varphi - V(\varphi) \right]$$

Background equations of motion: $\ddot{\varphi} + 3H\dot{\varphi} + V'(\varphi) = 0, \quad 3H^2 = \frac{1}{2}\dot{\varphi}^2 + V(\varphi)$

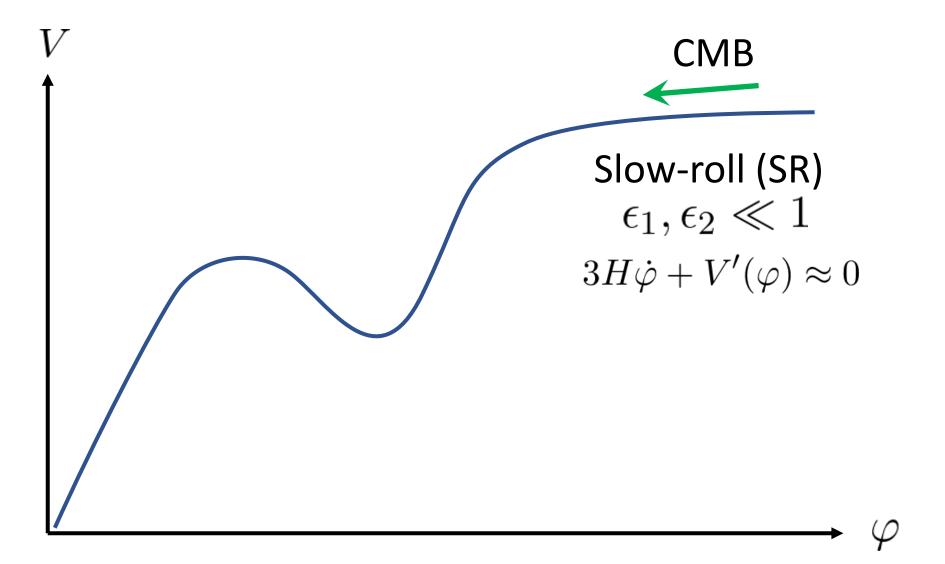
Single-field inflation is simple

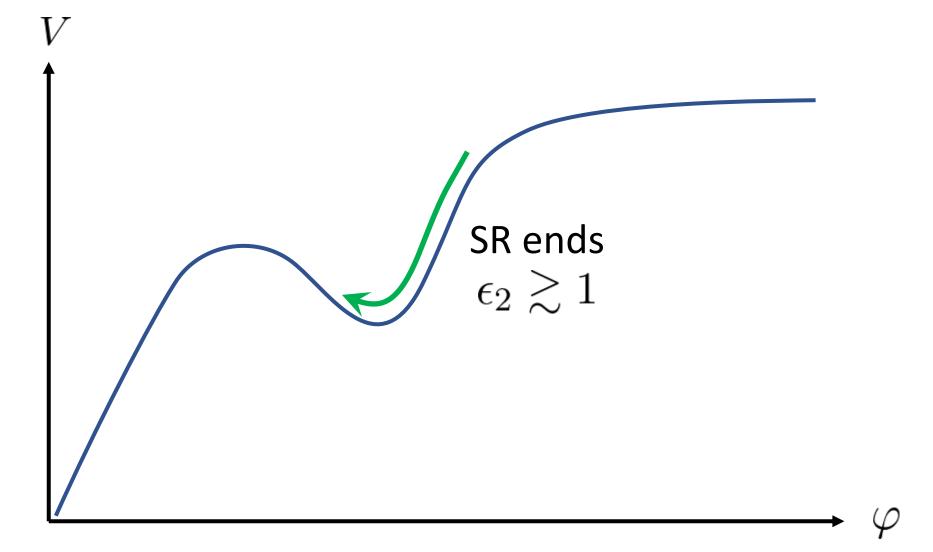
Action:

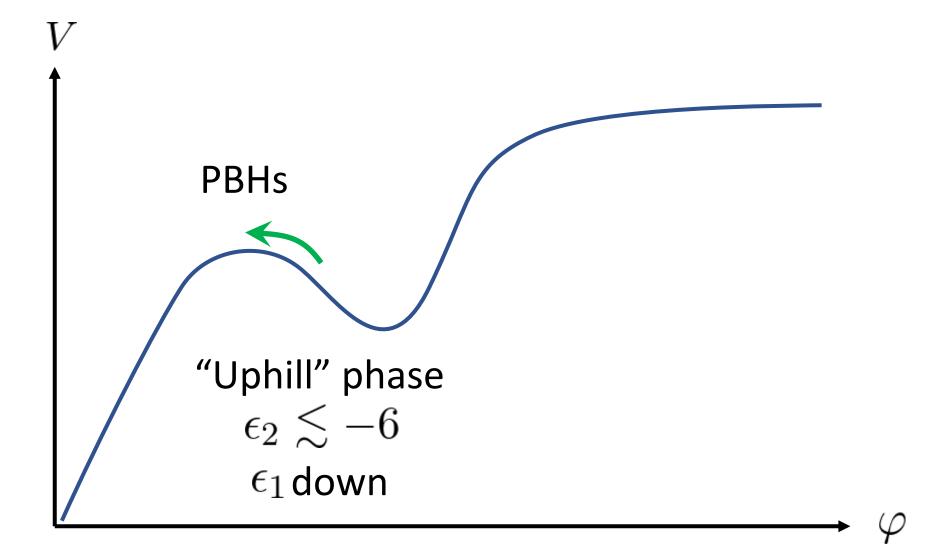
$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[\frac{1}{2} R - \frac{1}{2} \partial^\mu \varphi \partial_\mu \varphi - V(\varphi) \right]$$

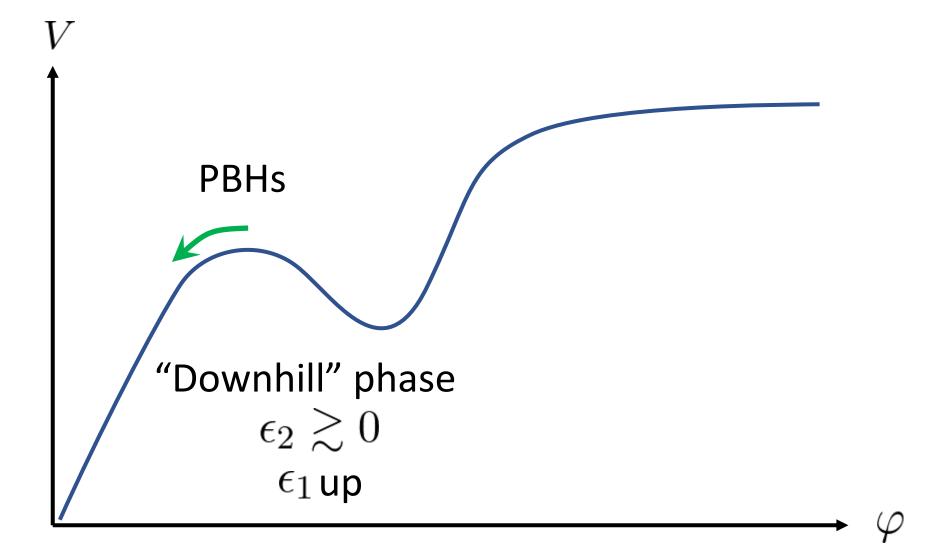
Background equations of motion: $\ddot{\varphi} + 3H\dot{\varphi} + V'(\varphi) = 0$, $3H^2 = \frac{1}{2}\dot{\varphi}^2 + V(\varphi)$

Slow-roll parameters: $\epsilon_1 \equiv -\partial_N \ln H$, $\epsilon_2 \equiv \partial_N \ln \epsilon_1$









Linear perturbations grow near feature Comoving curvature perturbation $\mathcal{R} = \frac{\delta \varphi}{\sqrt{2\epsilon_1}}$

$$\mathcal{R}_k + H(3 + \epsilon_2)\mathcal{R}_k + \frac{\pi}{a^2}\mathcal{R}_k = 0$$

Linear perturbations grow near feature Comoving curvature perturbation $\mathcal{R} = \frac{\delta \varphi}{\sqrt{2\epsilon_1}}$

$$\mathcal{R}_k + H(3 + \epsilon_2)\mathcal{R}_k + \frac{\pi}{a^2}\mathcal{R}_k = 0$$

Vacuum initial conditions:
$$\mathcal{R}_{k} = \frac{1}{2a\sqrt{k\epsilon_{1}}}e^{ik/(aH)}$$

Late times:

$$\mathcal{R}_k \to \text{const.}$$
 if $\epsilon_2 > -3$

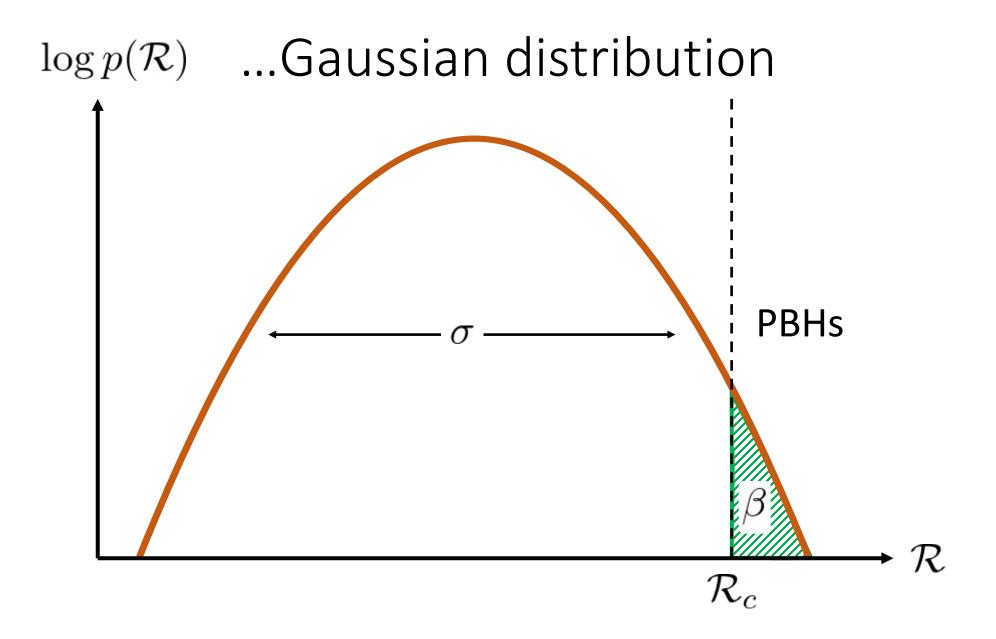
Linear perturbations grow near feature Comoving curvature perturbation $\mathcal{R} = \frac{\delta \varphi}{\sqrt{2\epsilon_1}}$

$$\mathcal{R}_k + H(3 + \epsilon_2)\mathcal{R}_k + \frac{\pi}{a^2}\mathcal{R}_k = 0$$

Vacuum initial conditions: $\mathcal{R}_{k} = \frac{1}{2a\sqrt{k\epsilon_{1}}}e^{ik/(aH)}$ $\mathcal{R}_{k} \to \text{const. if } \epsilon_{2} > -3$

Define power spectrum:
$$\mathcal{P}_{\mathcal{R}}(k) \equiv \frac{k^{\circ}}{2\pi^2} |\mathcal{R}_k|^2$$





Why this picture is wrong

 ${\cal R}\,$ is not the correct statistic for PBH formation

Perturbations in the tail are not Gaussian

I. (Semi-)inflection point inflation

II. Stochastic inflation

III. Black hole statistics

IV. An axion-curvaton model

Approximations in two regimes

Sub-Hubble scales:

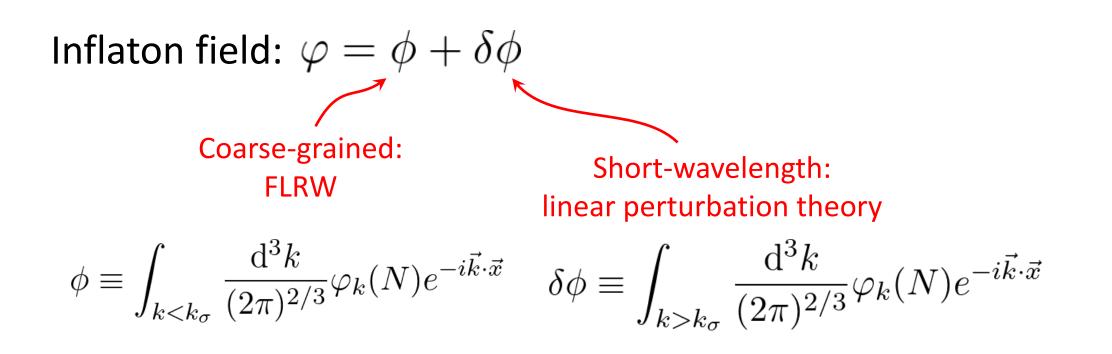
Linear perturbation theory good; neglect mode couplings

$$\delta\ddot{\varphi}_k + 3H\delta\dot{\varphi}_k + H^2\left(\frac{k^2}{a^2H^2} - \frac{3}{2}\epsilon_2 + \frac{1}{2}\epsilon_1\epsilon_2 - \frac{1}{4}\epsilon_2^2 - \frac{1}{2}\epsilon_2\epsilon_3\right)\delta\varphi_k = 0$$

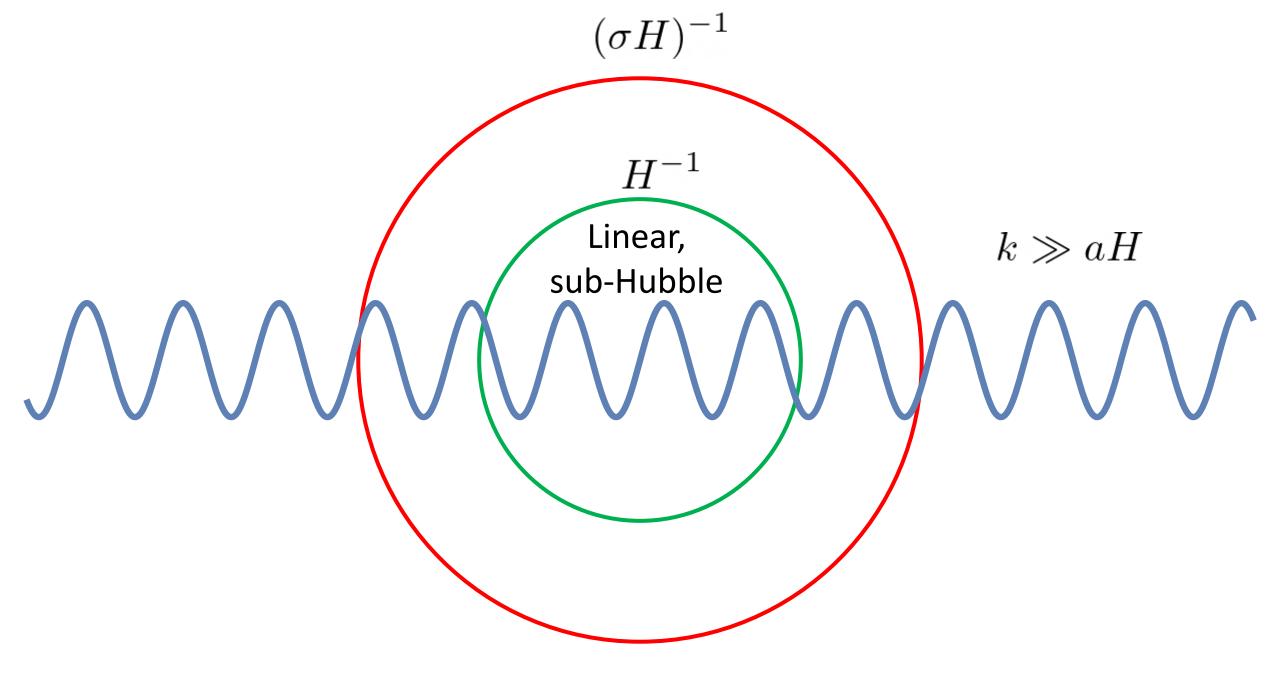
Super-Hubble scales:

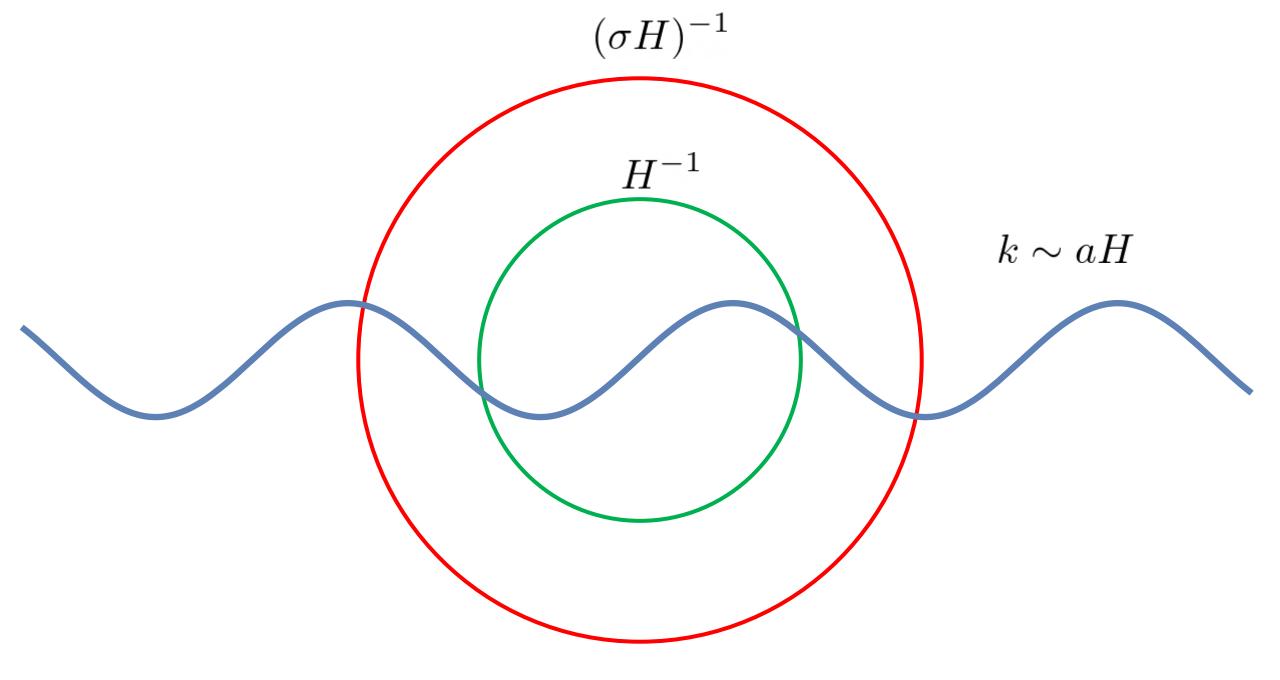
Local FLRW equations good; neglect gradient terms $\ddot{\varphi}+3H\dot{\varphi}+V'(\varphi)=0$

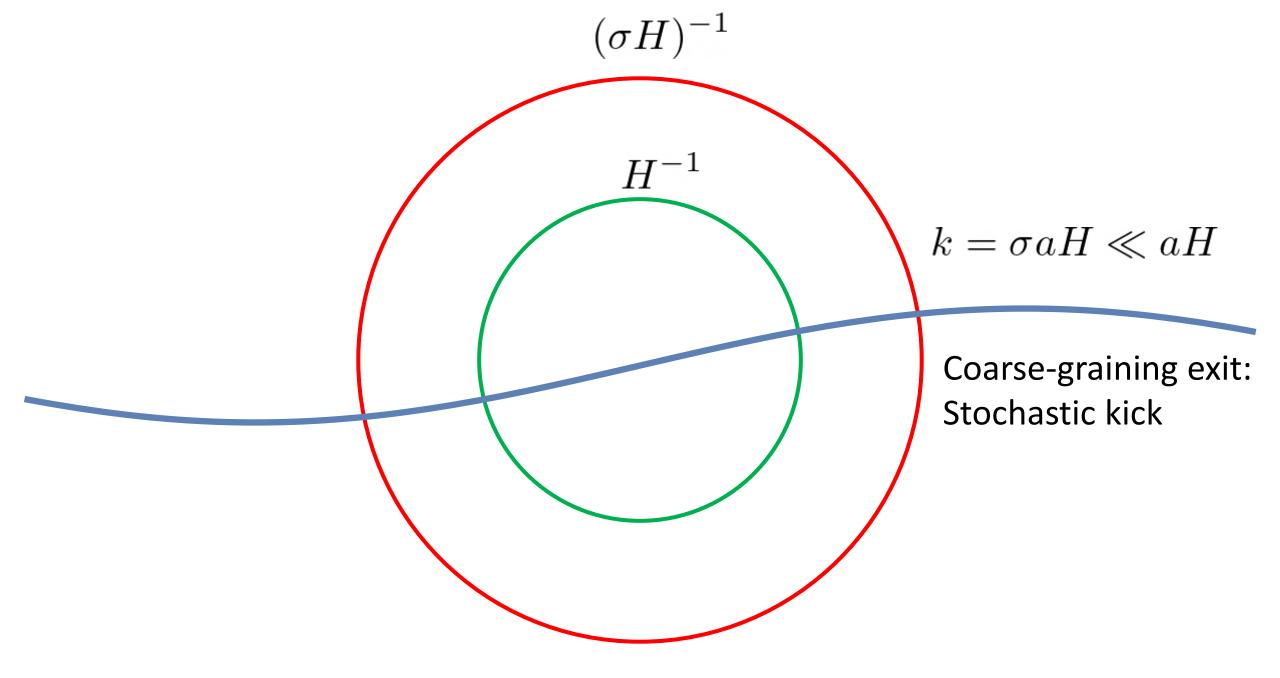
Approximations in two regimes



Patched together at the coarse-graining scale $k = k_{\sigma} \equiv \sigma a H$







Stochastic inflation

$$\begin{split} \phi' &= \pi + \xi_{\phi} \,, \quad \pi' = -\left(3 - \frac{1}{2}\pi^2\right)\pi - \frac{V'(\phi)}{H^2} + \xi_{\pi} \,, \quad H^2 = \frac{V(\phi)}{3 - \frac{1}{2}\pi^2} \\ \delta\phi_k'' &= -(3 - \frac{1}{2}\pi^2)\delta\phi_k' - \left[\frac{k^2}{a^2H^2} + \pi^2(3 - \frac{1}{2}\pi^2) + 2\pi\frac{V'(\phi)}{H^2} + \frac{V''(\phi)}{H^2}\right]\delta\phi_k \end{split}$$

$$\langle \xi_{\phi}(N)\xi_{\phi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi_{k_{\sigma}}(N)|^2 \delta(N-N')$$

$$\langle \xi_{\pi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi'_{k_{\sigma}}(N)|^2 \delta(N-N')$$

$$\langle \xi_{\phi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} \delta\phi_{k_{\sigma}}(N) \delta\phi'^*_{k_{\sigma}}(N) \delta(N-N')$$

0

 $\mathcal{R}_{< k} = \Delta N = N - \bar{N}$

ΔN formalism

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t)e^{2\zeta(x,t)}\mathrm{d}x^2$$

$$\Delta N \equiv N - \bar{N} = \mathcal{R} = \zeta$$

Stochastic ΔN formalism:

- solve stochastic system many times; include kicks up to scale $\,k$
- ${\mbox{ \bullet }}$ collect N on each run
- build statistics for coarse-grained curvature perturbation $\mathcal{R}_{< k}$

ΔN formalism

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t)e^{2\zeta(x,t)}\mathrm{d}x^2$$

$$\Delta N \equiv N - \bar{N} = \mathcal{R} = \zeta$$

Stochastic ΔN formalism:

- solve stochastic system many times; include kicks up to scale $\,k$
- ${\mbox{ \bullet }}$ collect N on each run
- build statistics for coarse-grained curvature perturbation $\mathcal{R}_{< k}$

Stochastic inflation

$$\begin{split} \phi' &= \pi + \xi_{\phi} \,, \quad \pi' = -\left(3 - \frac{1}{2}\pi^2\right)\pi - \frac{V'(\phi)}{H^2} + \xi_{\pi} \,, \quad H^2 = \frac{V(\phi)}{3 - \frac{1}{2}\pi^2} \\ \delta\phi_k'' &= -(3 - \frac{1}{2}\pi^2)\delta\phi_k' - \left[\frac{k^2}{a^2H^2} + \pi^2(3 - \frac{1}{2}\pi^2) + 2\pi\frac{V'(\phi)}{H^2} + \frac{V''(\phi)}{H^2}\right]\delta\phi_k \end{split}$$

$$\langle \xi_{\phi}(N)\xi_{\phi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi_{k_{\sigma}}(N)|^2 \delta(N-N') \langle \xi_{\pi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} |\delta\phi'_{k_{\sigma}}(N)|^2 \delta(N-N') \langle \xi_{\phi}(N)\xi_{\pi}(N')\rangle = \frac{1}{6\pi^2} \frac{\mathrm{d}k_{\sigma}^3}{\mathrm{d}N} \delta\phi_{k_{\sigma}}(N) \delta\phi'^*_{k_{\sigma}}(N) \delta(N-N')$$

 $\mathcal{R}_{< k} = \Delta N = N - \bar{N}$

Stochastic inflation

$$\phi' = \pi + \xi_{\phi}, \quad \pi' = -\left(3 - \frac{1}{2}\pi^{2}\right)\pi - V \qquad I^{2} = \frac{V(\phi)}{3 - \frac{1}{2}\pi^{2}}$$

$$\delta\phi''_{k} = -(3 - \frac{1}{2}\pi^{2})\delta\phi'_{k} - \left[\frac{k^{2}}{\pi}\right] + 2\pi \frac{V'(\phi)}{H^{2}} + \frac{V''(\phi)}{H^{2}}\right]\delta\phi_{k}$$

$$\langle\xi_{\phi}(N)\xi_{\phi}(N')\rangle = \frac{1}{\pi} + \delta(N - N')$$

$$\langle\xi_{\pi}(N)\xi_{\pi}(N') = \frac{1}{\pi^{2}} + \delta(N - N')$$

$$\langle\xi_{\phi}(N)\xi_{\pi}(N) = \frac{\kappa_{\sigma}}{\pi^{2}} + \delta(N)\delta\phi'_{k_{\sigma}}(N)\delta(N - N')$$

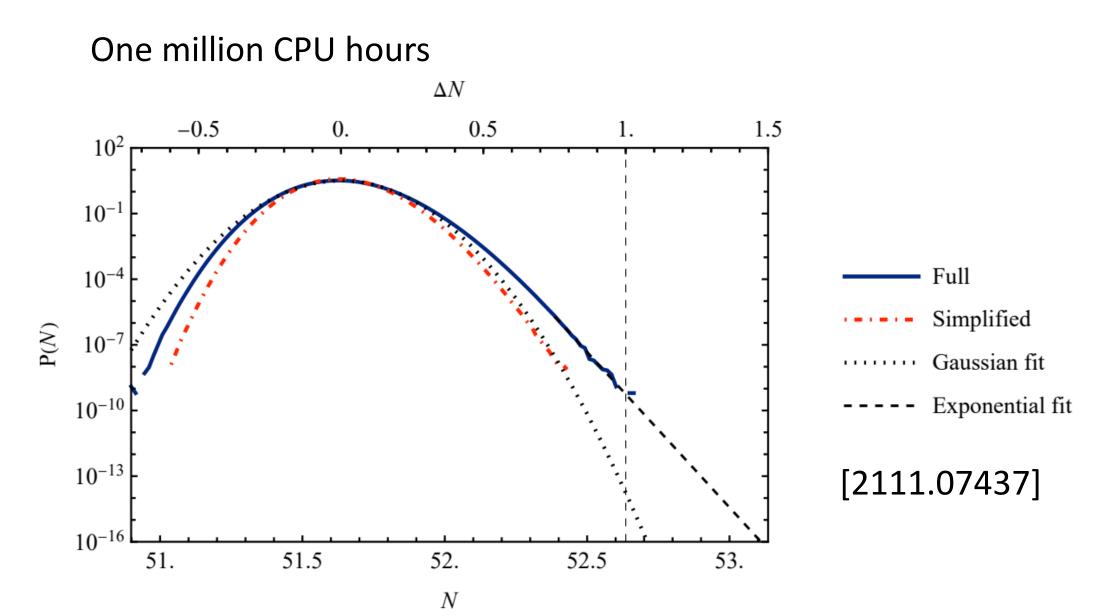
$$\mathcal{R}_{< k} = \Delta N = N - \bar{N}$$

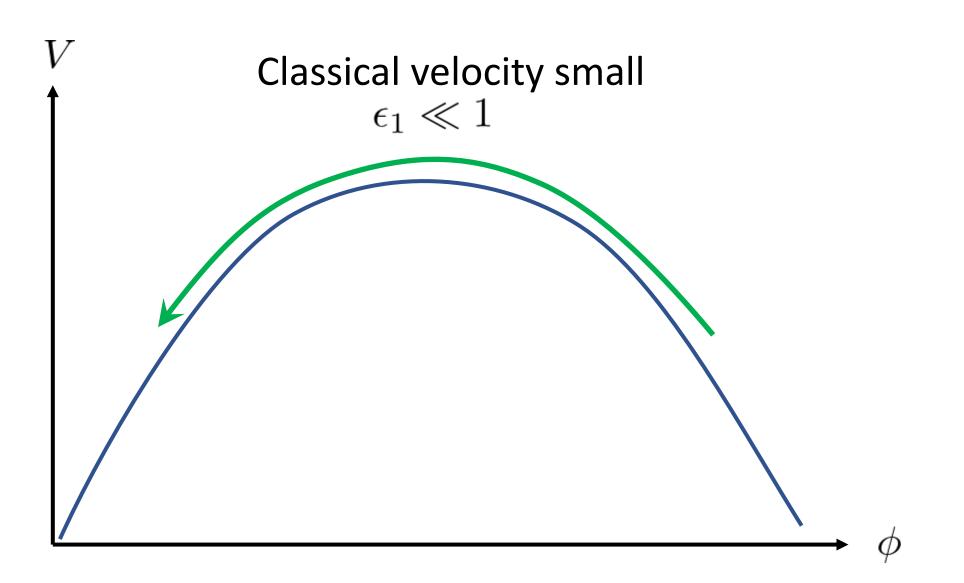
How to move forward?

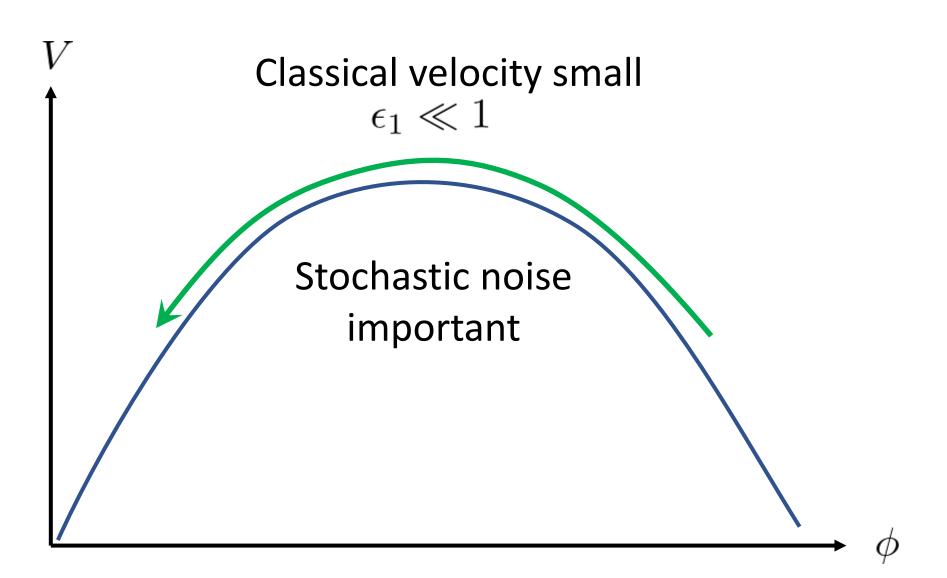
Analytical approximations? $\langle \xi_{\phi}(N)\xi_{\phi}(N')\rangle \approx \frac{H^2}{4\pi^2}\delta(N-N')$

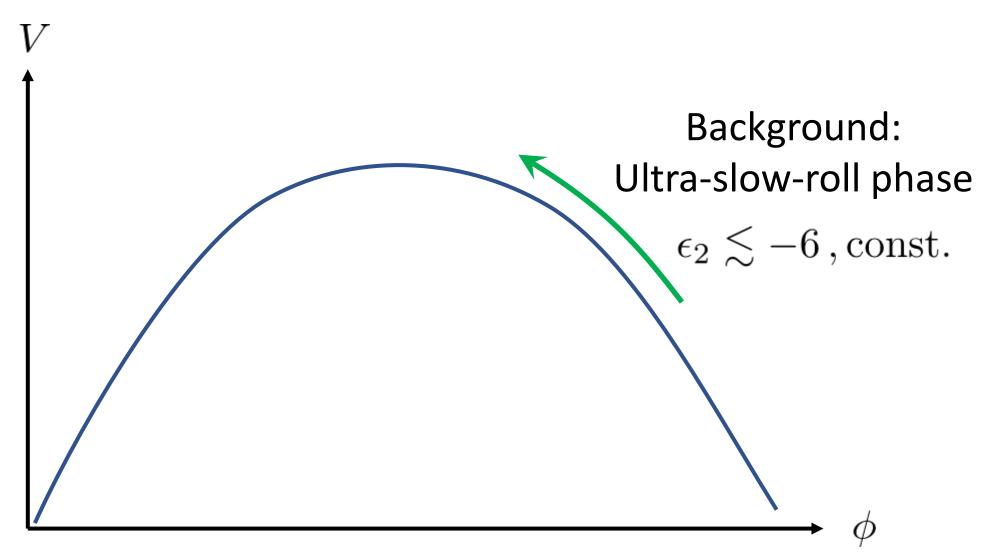
Full numerical computations?

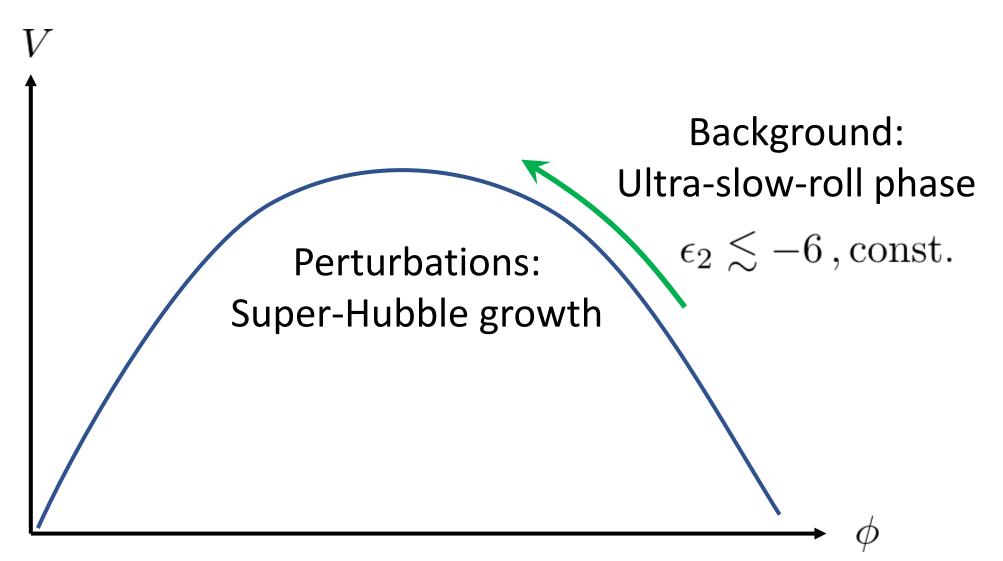
Full numerical computations

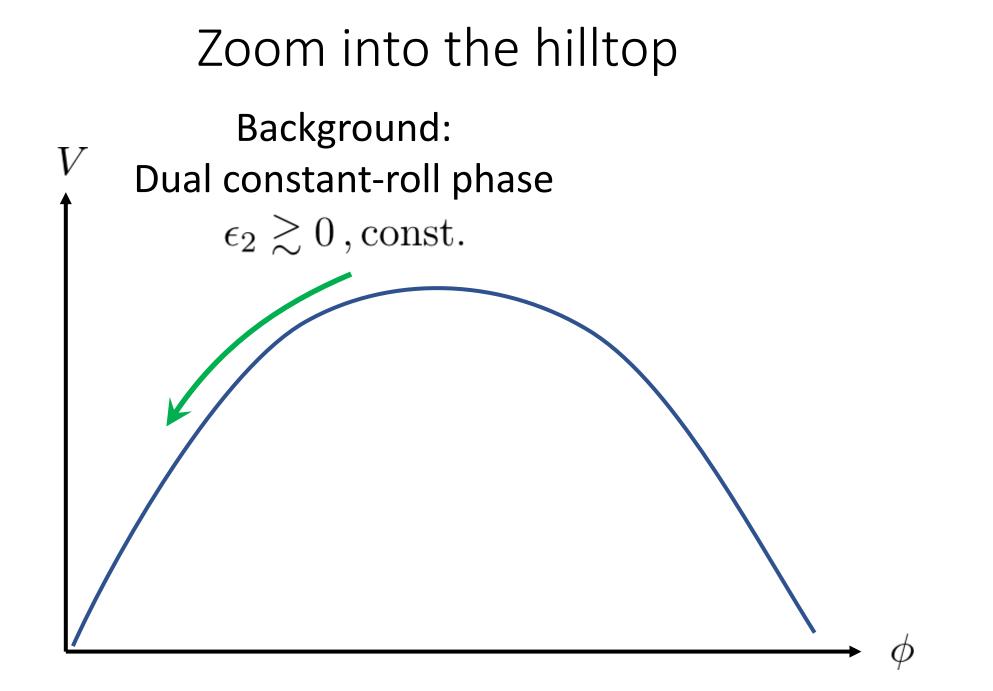


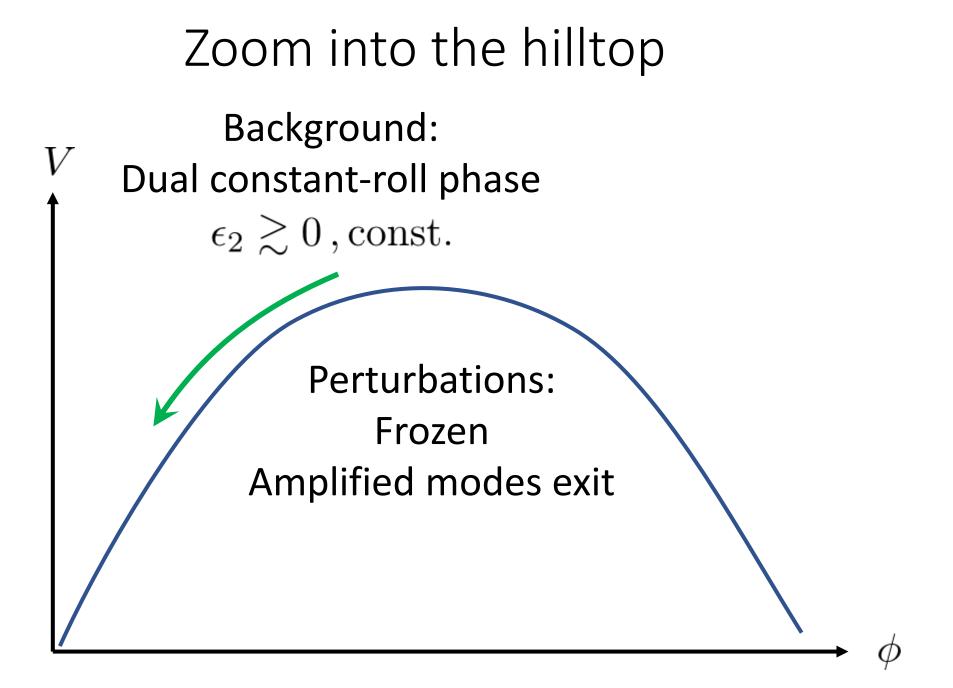












Equations simplify in dual constant-roll phase

Adiabatic perturbations: motion along classical trajectory only

Noise independent of background stochasticity: pre-compute power spectrum

Simplified stochastic equation: $d\phi = \frac{\epsilon_2}{2}(\phi - \phi_0)dN + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}\sqrt{\mathcal{P}_{\mathcal{R}}(k_\sigma)dN}\,\hat{\xi}_N$ $\langle \hat{\xi}_N \hat{\xi}_{N'} \rangle = \delta_{NN'}$

Simplified stochastic equation:

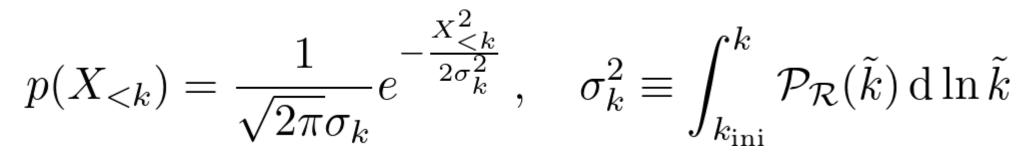
$$d\phi = \frac{\epsilon_2}{2}(\phi - \phi_0)dN + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}\sqrt{\mathcal{P}_{\mathcal{R}}(k_{\sigma})dN}\,\hat{\xi}_N$$

$$\phi(N) = \phi_0\left(1 - e^{\frac{\epsilon_2}{2}N}\right) + \frac{\epsilon_2}{2}\phi_0 e^{\frac{\epsilon_2}{2}N}X_{< k_{\sigma}}$$

$$\langle \hat{\xi}_N \hat{\xi}_{N'} \rangle = \delta_{NN'}$$

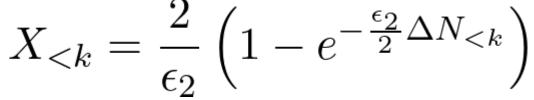
$$X_{$$

 ΔN distribution



 ΔN distribution





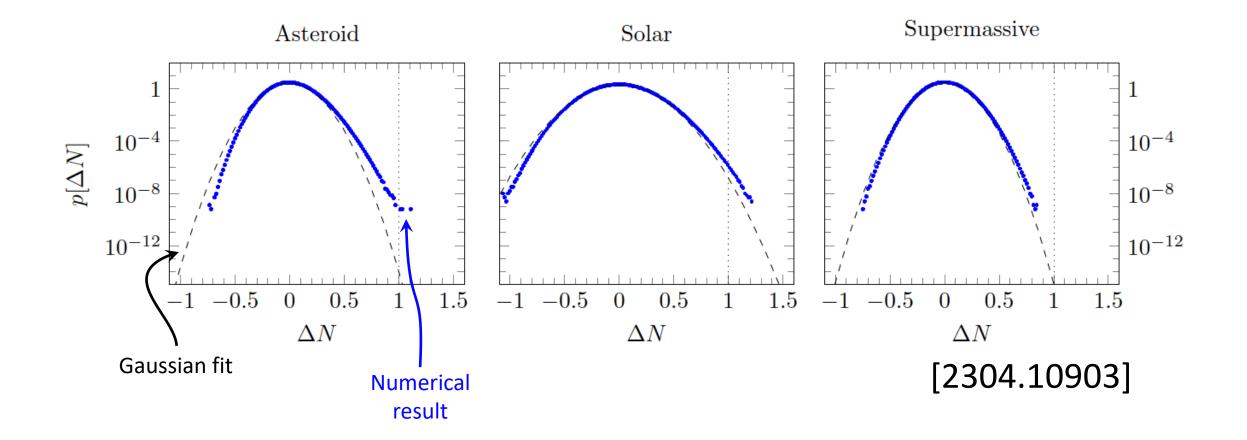
 ΔN distribution

$$p(X_{< k}) = \frac{1}{\sqrt{2\pi}\sigma_k} e^{-\frac{X_{< k}^2}{2\sigma_k^2}}, \quad \sigma_k^2 \equiv \int_{k_{\text{ini}}}^k \mathcal{P}_{\mathcal{R}}(\tilde{k}) \, \mathrm{d} \ln \tilde{k}$$

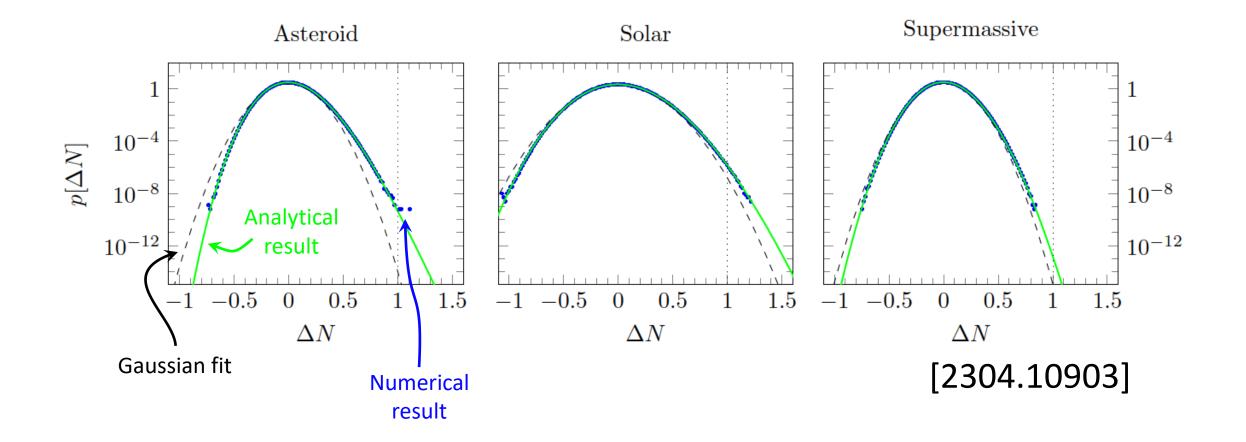
$$X_{$$

$$p(\Delta N_{< k}) = \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left[-\frac{2}{\sigma_k^2 \epsilon_2^2} \left(1 - e^{-\frac{\epsilon_2}{2}\Delta N_{< k}}\right)^2 - \frac{\epsilon_2}{2}\Delta N_{< k}\right]$$
$$\Delta N_{< k} = \mathcal{R}_{< k}$$

Comparison to numerics



Comparison to numerics



I. (Semi-)inflection point inflation

II. Stochastic inflation

III. Black hole statistics

IV. An axion-curvaton model

Compaction function: right tool for determining the collapse threshold

$$\mathcal{C} \equiv 2 \frac{M_{\rm MS} - M_{\rm bg}}{R}$$

Collapse:
$$C_{\max} > C_c \approx 0.4$$

Compaction function: right tool for determining the collapse threshold

$$\mathcal{C} \equiv 2 \frac{M_{\rm MS} - M_{\rm bg}}{R}$$

Collapse:
$$C_{\max} > C_c \approx 0.4$$

In inflationary variables:

$$\mathcal{C}(r) = \frac{2}{3}(1 - [1 + r\zeta'(r)]^2)$$

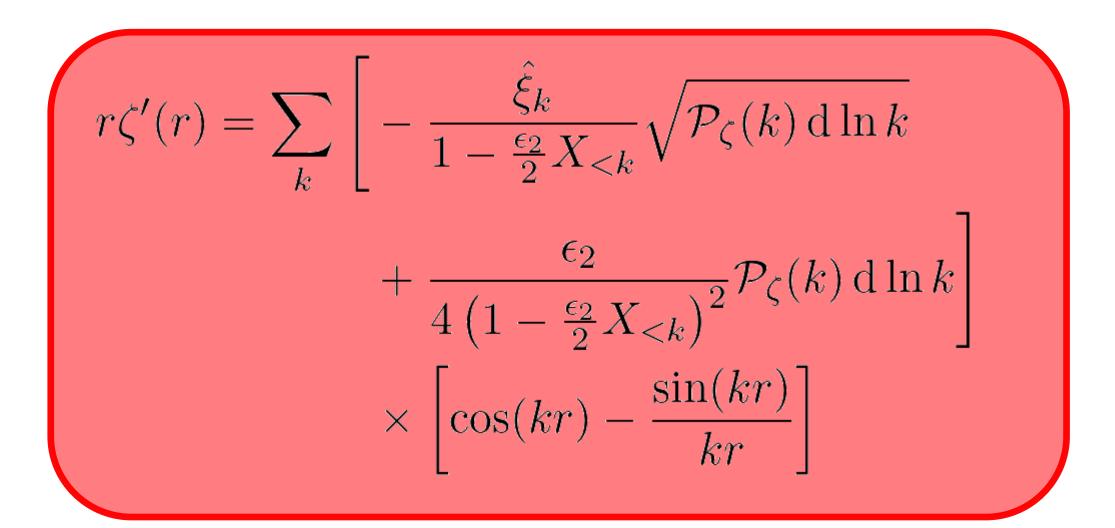
Assume spherical symmetry

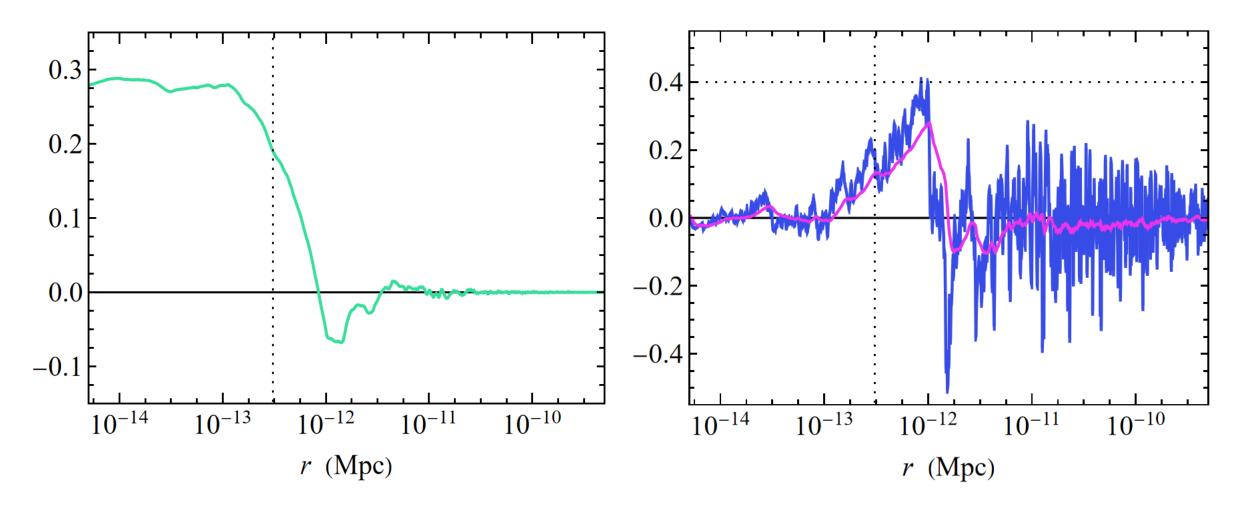
$$r\zeta'(r) = \sum_{k} \frac{2k^2 \,\mathrm{d}k}{\sqrt{2\pi}} \,\zeta_k \left[\cos(kr) - \frac{\sin(kr)}{kr}\right]$$
$$\zeta_k = \frac{\sqrt{2\pi}}{2k^3} \frac{\mathrm{d}\zeta_{$$

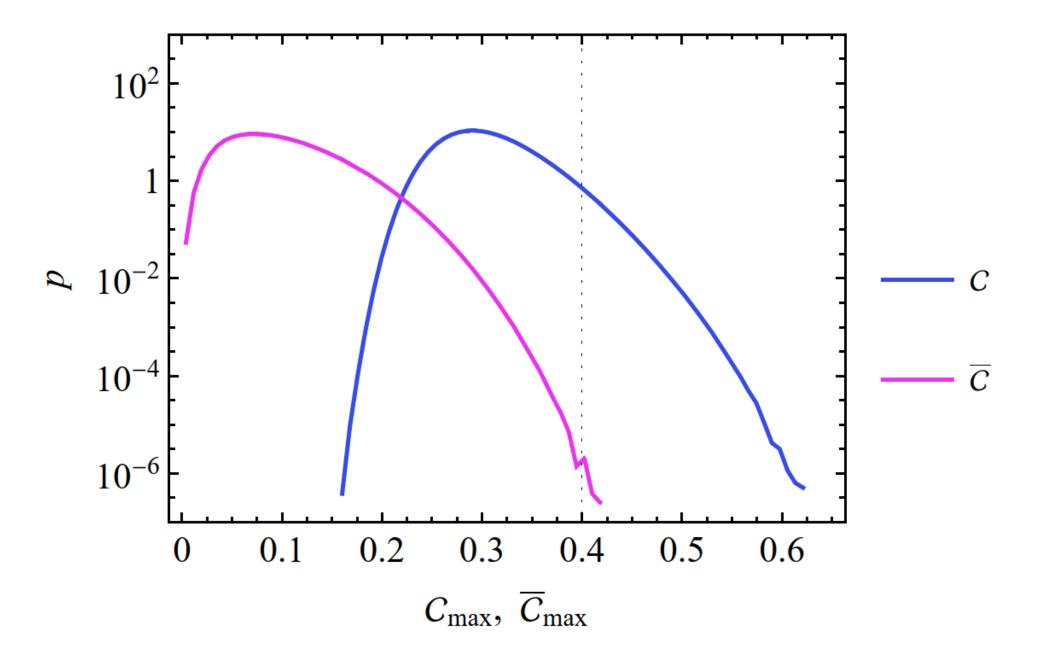
Assume spherical symmetry

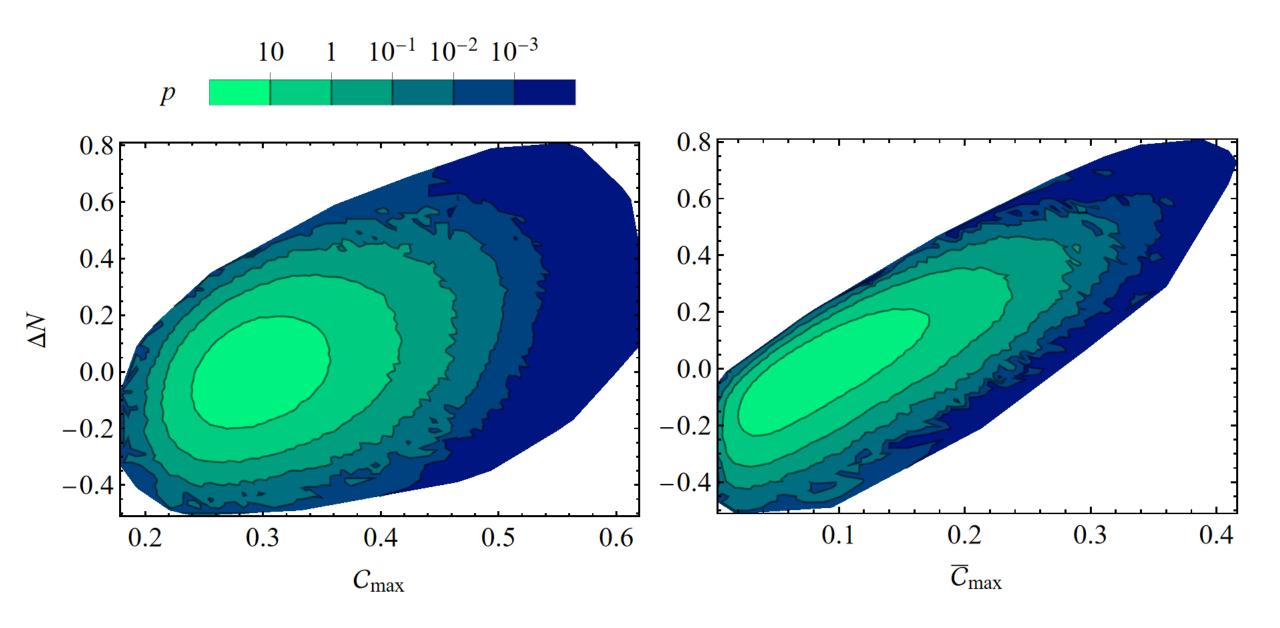
$$\begin{split} r\zeta'(r) &= \sum_{k} \frac{2k^2 \, \mathrm{d}k}{\sqrt{2\pi}} \, \zeta_k \left[\cos(kr) - \frac{\sin(kr)}{kr} \right] \\ & \mathsf{Vary k:} \\ \zeta_k &= \frac{\sqrt{2\pi}}{2k^3} \frac{\mathrm{d}\zeta_{$$

Master formula









Initial PBH fractions

Gaussian approximation, $\mathcal{R}_{< k} > 1$, fixed $k: \beta \approx 5 \times 10^{-16}$

Non-Gaussian statistics, $\mathcal{R}_{< k} > 1$, fixed $k \colon \ eta pprox 2.2 imes 10^{-11}$

 $\bar{\mathcal{C}}_{\max} > 0.4: \quad \beta \approx 1.4 \times 10^{-8}$

 $C_{\rm max} > 0.4$: $\beta \approx 0.016$

I. (Semi-)inflection point inflation

II. Stochastic inflation

III. Black hole statistics

IV. An axion-curvaton model

Axion-like curvaton $V(\psi) = \Lambda_a^4 \left[1 - \cos\left(\frac{N_{\rm DW}\psi}{f_a}\right) \right]$

Axion-like curvaton $V(\psi) = \Lambda_a^4 \left[1 - \cos\left(\frac{N_{\rm DW}\psi}{f_a}\right) \right]$

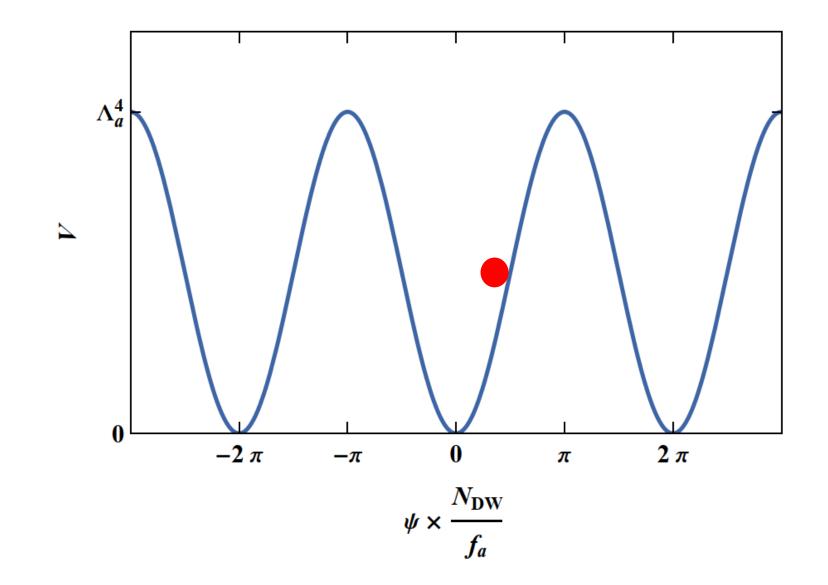
During inflation: $d\psi = \sigma_N \sqrt{dN} \xi_N$, $\sigma_N \equiv \frac{H_*}{2\pi}$, $\langle \xi_N \xi_{N'} \rangle = \delta(N - N')$

Axion-like curvaton $V(\psi) = \Lambda_a^4 \left[1 - \cos\left(\frac{N_{\rm DW}\psi}{f_a}\right) \right]$

During inflation: $d\psi = \sigma_N \sqrt{dN} \xi_N, \qquad \sigma_N \equiv \frac{H_*}{2\pi}, \qquad \langle \xi_N \xi_{N'} \rangle = \delta(N - N')$

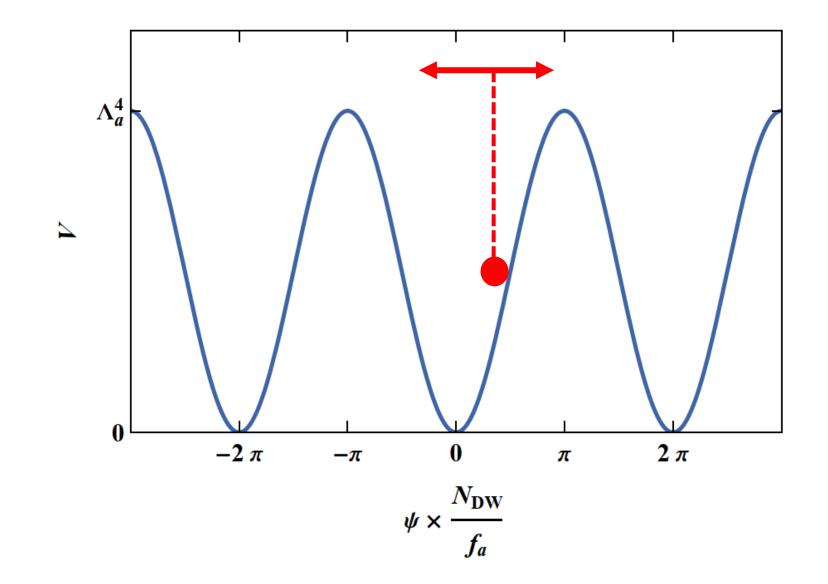
After inflation: $\psi'' + \left[\left(3 - \frac{1}{2} \psi'^2 \right) - \frac{2}{3} \frac{\rho_r}{H^2} \right] \psi' + \frac{V'}{H^2} = 0, \quad H^2 = \frac{V + \rho_r}{3 - \frac{1}{2} \psi'^2}, \quad \rho_r = \rho_{\text{dec}} e^{-4N_p}$

Axion-like curvaton

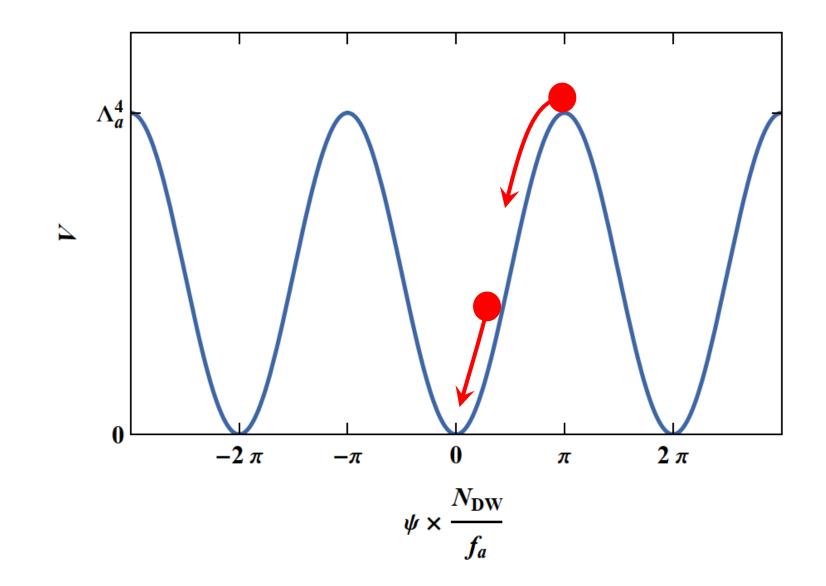


61

Axion-like curvaton



Axion-like curvaton

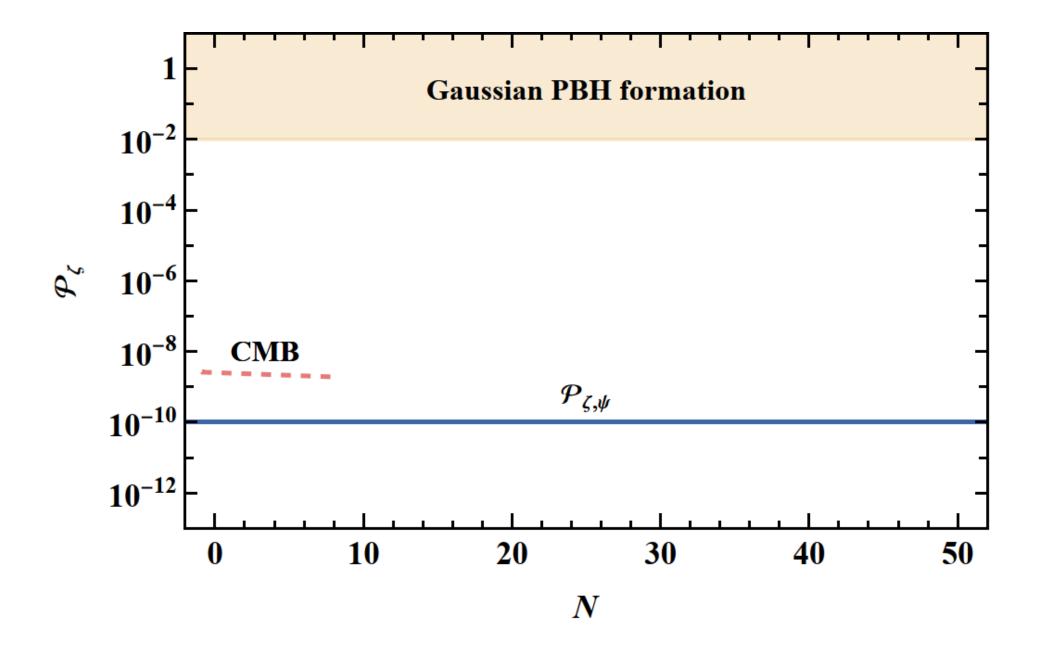


63

Cosmological perturbations

Curvaton decays; curvature perturbation through ΔN formalism

$$\mathcal{P}_{\zeta,\psi}(k) = \mathcal{P}_{\psi}(k)\tilde{N}_{\psi_0}^2 = \frac{H^2(k)}{4\pi^2}\tilde{N}_{\psi_0}^2$$



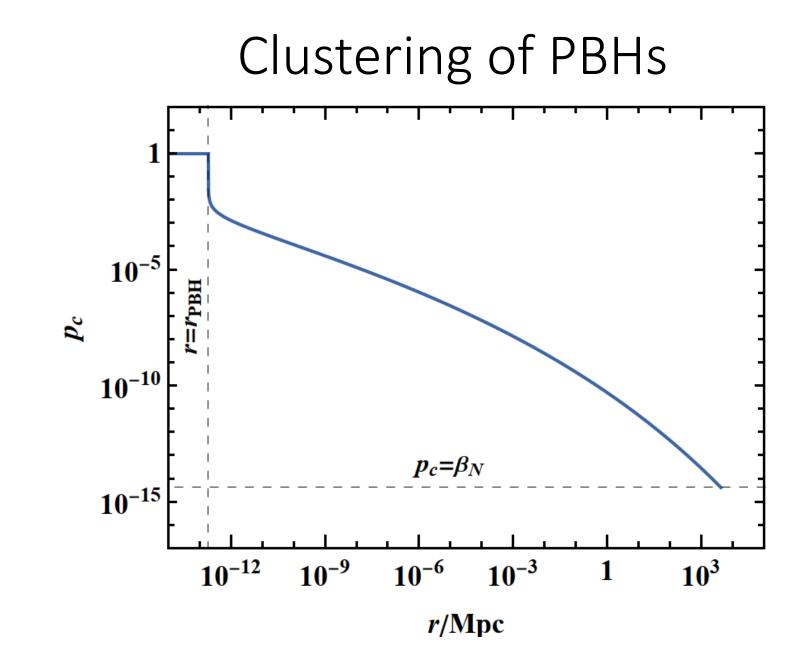
Cosmological perturbations

Curvaton decays;

curvature perturbation through ΔN formalism

$$C = \frac{2}{3} \left[1 - \left(1 + \frac{\mathrm{d}\zeta(r)}{\mathrm{d}\ln r} \right)^2 \right]$$

$$P(\mathcal{C}_{l}, N) = \frac{b}{2\sqrt{N\pi}\mathcal{C}_{l}^{2}}e^{-\frac{(\pi-\theta_{0})^{2}}{2q^{2}N} - \frac{1}{2}}$$

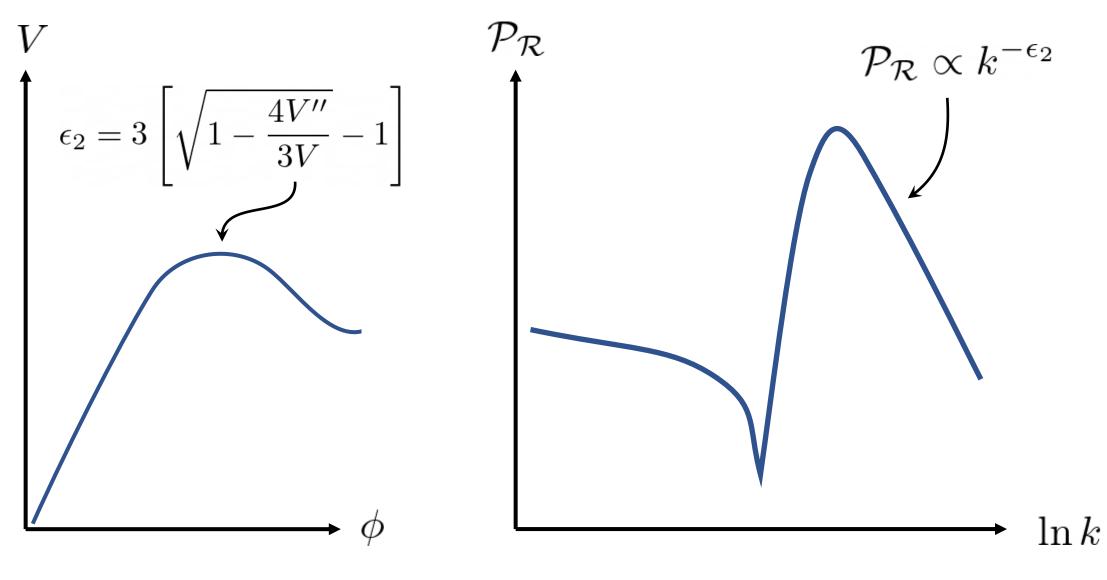


Conclusions

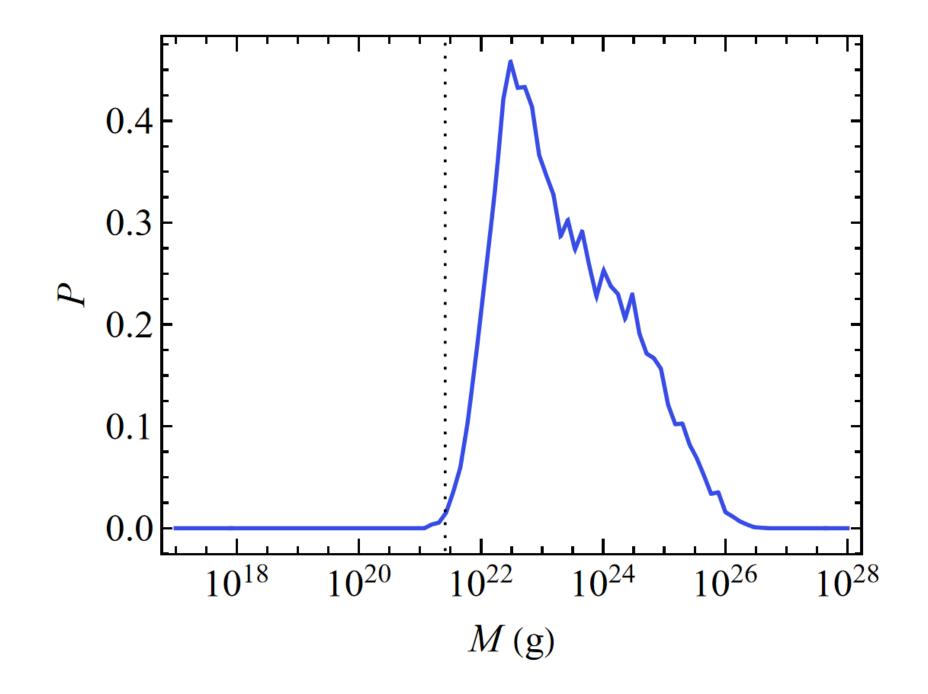
Stochastic inflation introduces non-Gaussian corrections to PBH statistics

Compaction function formalism needed for accurate results

Future directions: resolving sharp peaks, considering PBH clustering



[2205.13540]



Alternative collapse measure: averaged compaction function $R = are^{\zeta}$ $\bar{\mathcal{C}}(r) \equiv \frac{3}{R(r)^3} \int_0^{R(r)} \mathrm{d}\tilde{R}\tilde{R}^2 \mathcal{C} \quad \leftarrow$ $= -\frac{2}{r^3 e^{3\zeta(r)}} \int_0^r \mathrm{d}\tilde{r}\,\tilde{r}^2 e^{3\zeta} [2\tilde{r}\zeta' + 3(\tilde{r}\zeta')^2 + (\tilde{r}\zeta')^3]$